
Co
m

pr
es

se
d

Ba
ry

on
ic

M
at

te
rE

xp
er

im
en

t
Technical Design Report
for the CBM

Online Systems – Part I
DAQ and FLES Entry Stage

The CBM Collaboration

July 2023





Technical Design Report for the
CBM Online Systems – Part I

DAQ and FLES Entry Stage

The CBM Collaboration1

Imprint

Editors:
J. de Cuveland, D. Emschermann, V. Friese, I. Fröhlich, P. Gasik, D. Hutter, W.F.J. Müller,
C. Sturm

Corresponding Editor and responsible:
P. Gasik (p.gasik@gsi.de)

With major contributions by:
A. Bercuci, I. Deppner, J. Frühauf, T. Galatyuk, M. Gumiński, N. Herrmann, P. Käh-
ler, O. Keller, M. Kruszewski, J. Lehnert, P.-A. Loizeau, J. Michel, C. Pauly, F. Salem,
F. Schintke, A. Rost, E. Rubio, J. Saini, C. Schiaua, D. Schledt, V. Sidorenko, A.A. Weber,
W. Zabołotny

Approved by FAIR on 24 June 2023

Published July 2023 by GSI Helmholtzzentrum für Schwerionenforschung GmbH,
Planckstraße 1, 64291 Darmstadt, Germany (http://www.gsi.de).

GSI is a member of the Helmholtz association of national research centers
(http://www.helmholtz.de).

DOI:10.15120/GSI-2023-00739

Published only online.

Version 2c39a34

This Report is licensed under the Creative Commons Attribution BY 4.0 (CC BY 4.0):
https://creativecommons.org/licenses/by/4.0

1The full list of the CBM members is given in Appendix C

p.gasik@gsi.de
http://www.gsi.de
http://www.helmholtz.de
https://creativecommons.org/licenses/by/4.0


The activities within the CBM project are supported by (status November 2022):

The National Natural Science Foundation of China under grants no. 11927901,
11420101004, 11735009, U1832118,

The Ministry of Science and Technology of China under grants no. 2018YFE0205200,
2016YFA0400100,

FAIR-CZ-OP (CZ.02.1.01/0.0/0.0/16 013/0001677) and FAIR-CZ (LM2018112), Czech
Republic,

The European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 871072,

Bundesministerium für Bildung und Forschung, Germany, under grants 05P15VHFC1,
05P19PMFC1, 05P19PXFCA, 05P19RFFC1 and 05P19RGFCA,

Deutsche Forschungsgemeinschaft, Germany, under grant 405580046,

GSI Helmholtzzentrum für Schwerionenforschung, Germany,

Helmholtz International Centre for FAIR, Germany,

Helmholtz Graduate School HGS-HIRe,

Helmholtz Forschungsakademie Hessen für FAIR, Germany,

Frankfurt Institute for Advances Studies, Germany,

Variable Energy Cyclotron Centre Kolkata, India (EHEP&A Group), University of
North Bengal, India,

IDUB-POB-FWEiTE-1 project granted by Warsaw University of Technology, Poland,
under the program Excellence Initiative: Research University (ID-UB),

Romanian Ministry of Research, Innovation and Digitization NUCLEU Project Contract
PN 19060103 and RO-FAIR Project FAIR-03/16.11.2020.



Contents

Preface 7

1 The Compressed Baryonic Matter Experiment 9
1.1 Exploring the phase diagram of nuclear matter . . . . . . . . . . . . . . . . 9
1.2 Diagnostic probes of the high-density fireball . . . . . . . . . . . . . . . . . 11
1.3 Physics cases and observables . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 The Facility for Antiproton and Ion Research (FAIR) . . . . . . . . . . . . . 15
1.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Online System Overview 21
2.1 Overall architecture and scope of this document . . . . . . . . . . . . . . . . 21
2.2 Readout architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Requirements and Constraints 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Operation of the CBM experiment . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Data rates from detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 First-level Event Selector 35
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 FLES interface module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Timeslice building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Cluster and network design . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 System integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Common Readout Interface 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 The CRI board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 FPGA design prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4 The device control agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Physical connections and layout . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Timing and Fast Control System 113
6.1 Overall concept and requirements . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 Clock forwarding and time synchronization concept . . . . . . . . . . . . . . 115
6.4 Fast control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5



Contents

7 Evaluation by mCBM 119
7.1 mCBM experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Data acquisition hardware setup . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Data path software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Data path performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6 Data analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Data Rate Considerations per Subsystem 131
A.1 BMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 MVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.3 STS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.4 RICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.5 TRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.6 TOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.7 PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B Data Sources 137
B.1 SMX-based systems: STS and MUCH . . . . . . . . . . . . . . . . . . . . . 137
B.2 SPADIC-based system: TRD-1D . . . . . . . . . . . . . . . . . . . . . . . . 149
B.3 FASP-based system: TRD-2D . . . . . . . . . . . . . . . . . . . . . . . . . . 152
B.4 GET4-based systems: TOF and BMON . . . . . . . . . . . . . . . . . . . . 156
B.5 MVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.6 RICH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.7 PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C The CBM Collaboration 173

List of Figures 177

List of Tables 179

Glossary 181

Bibliography 189

6



Preface

Despite the current uncertainties in the future of FAIR, the CBM collaboration is con-
tinuing its effort towards the construction of a high-resolution and high-rate experiment
with the goal of exploring the region of high baryon density in the QCD phase diagram.
Recently, the Critical End Point (CEP) of a possible first-order phase transition was pre-
dicted to be located at baryon densities and temperature which can be reached with beam
energies available from the SIS100 accelerator. The CBM scientific program to search for
the location of the first order phase transition and to identify the CEP is currently unique
world-wide. In order to exploit this unique opportunity, CBM is preparing its readiness
for the very first SIS100 beams to be extracted from the machine.

The data acquisition and processing concept of CBM is a novel and mandatory part of
the program since the anticipated signatures cannot be extracted by means of a con-
ventional, triggered acquisition system. The Online Systems (Part I) Technical Design
Report contains the description of the hardware and FPGA design which forms the basis
of the CBM data processing chain. Its acceptance is crucial for reaching the overall goals
and is therefore pushed forward despite the lack of some information which is caused by
the unacceptable Russian attack of Ukraine and the resulting sanctions instituted. The
suspension of membership in the CBM collaboration of Russian institutes was endorsed
by the CBM Collaboration Board on May 18, 2022. Besides the superconducting dipole
magnet, CBM lost its centrality and event plane defining device, the Projectile Specta-
tor Detector (PSD), and the Beam Fragmentation Time-Zero Counter (BFTC) which had
been designed to deliver the event time for the highest interaction rates. The collaboration
is currently engaged in discussing and agreeing replacements. However, for the purpose
of advancing the online systems, in the current document we still use the original PSD
and BFTC numbers and their original geometries, with the reasonable assumption that
the replacement systems will have some similar properties in terms of data rate and vol-
ume. The architecture of the proposed system is certainly flexible enough to accommodate
changes in the payload data structures and rates.

Darmstadt, November 16, 2022
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Chapter 1

The Compressed Baryonic Matter
Experiment

1.1 Exploring the phase diagram of nuclear matter

Substantial experimental and theoretical efforts worldwide are devoted to the exploration
of the phase diagram of nuclear matter. Figure 1.1 illustrates the possible phases of nu-
clear matter and their boundaries in a diagram of temperature versus baryon chemical
potential. Cold nuclear matter – as found in normal nuclei with a net-baryon density
equal to one – consists of protons and neutrons (i. e., nucleons) only. At moderate temper-
atures and densities, nucleons are excited to short-lived states (baryonic resonances) which
decay by the emission of mesons. At higher temperatures, baryon-antibaryon pairs are
also created. This mixture of baryons, anti-baryons and mesons, all strongly interacting

Figure 1.1: Sketch of the phase diagram of strongly-interacting matter (taken from [1])
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Chapter 1 The Compressed Baryonic Matter Experiment

particles, is generally called hadronic matter, or baryonic matter if baryons prevail. At
very high temperatures or densities the hadrons melt, and their constituents, the quarks
and gluons, form a new phase: the Quark-Gluon-Plasma (QGP). For very low net-baryon
densities where the numbers of particles and anti-particles are approximately equal, Quan-
tum Chromo-Dynamics (QCD) on the lattice predicts that hadrons dissolve into quarks
and gluons above a temperature of about 155 MeV [2]. The inverse process happened in
the universe during the first few microseconds after the big bang: the quarks and gluons
were confined into hadrons. In this region of the phase diagram, the transition is expected
to be a smooth crossover from partonic to hadronic matter [2]. Calculations suggest a
critical endpoint at relatively large values of the baryon chemical potential [3]. Beyond
this critical endpoint, at larger values of net-baryon densities (and for lower temperatures),
one expects a first-order phase transition from hadronic to partonic matter with a phase
coexistence region in between. A new phase of so called quarkyonic matter has been pro-
posed to exist beyond the first order phase transition at large baryon chemical potentials
and moderate temperatures [4]. High-density but cold nuclear matter is expected to exist
in the core of neutron stars, and at very high densities correlated quark-quark pairs are
predicted to form a color superconductor.

As illustrated in Figure 1.1, it is expected that the QCD phase diagram exhibits a rich
structure at finite values of baryon chemical potentials, such as the critical point, the pre-
dicted first order phase transition between hadronic and partonic or quarkyonic matter,
and the chiral phase transition. The experimental discovery of these prominent landmarks
of the QCD phase diagram would be a major breakthrough in our understanding of the
properties of nuclear matter. Of equal importance is the quantitative experimental in-
formation on the properties of hadrons in dense matter which may shed light on chiral
symmetry restoration and the origin of hadron masses. In the laboratory, hot and dense
nuclear matter is created at a wide range of temperatures and densities by colliding atomic
nuclei at high energies.

The goal of the experiments at RHIC and LHC is to investigate the properties of deconfined
QCD matter at very high temperatures and almost zero net-baryon densities. Several
experimental programs are devoted to the exploration of the QCD phase diagram at high
net-baryon densities. The STAR collaboration at RHIC scanned the beam energies and
even conducted a fixed target program with the collider detector in order to search for the
QCD critical endpoint [5, 6]. For the same reason, measurements are performed at the
CERN-SPS with the upgraded NA49 detector (NA61) using light- and medium-sized ion
beams [7, 8]. At the Joint Institute for Nuclear Research (JINR) in Dubna, a new heavy-
ion collider (NICA) is being built with the similar goal to search for the high baryon
density phase transition of nuclear matter [9]. However, due to luminosity or detector
limitations, these experiments are constrained to the investigation of particles which are
abundantly produced. In contrast, the Compressed Baryonic Matter (CBM) experiment
at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt is designed for
precision measurements of multidimensional observables including particles with very low
production cross sections using the high-intensity heavy-ion beams provided by the SIS100
accelerator.
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1.2 Diagnostic probes of the high-density fireball

Figure 1.2: Baryon density as function of elapsed time for central Au+Au collisions calcu-
lated with different transport models [10]

The SIS100 accelerator at FAIR is very well suited to create high net-baryon densities.
This is illustrated in Figure 1.2 which depicts results of transport code calculations for
central Au+Au collisions. According to these calculations, densities beyond five times
saturation density of 0.17 fm−3 can be produced already at beam energies of 10A GeV.
Under these conditions the nucleons overlap, and theory predicts a transition to a mixed
phase of baryons and quarks.

1.2 Diagnostic probes of the high-density fireball

Figure 1.3 depicts the evolution of a heavy-ion collision at FAIR energies as calculated
with the UrQMD transport code [11], and illustrates the time of production and eventual
emission of various particle species. Particles containing charm quarks are expected to be
created in the very first stage of the reaction. Thus, D mesons and J/ψ mesons may serve
as probes for the dense fireball and its degrees of freedom. Vector mesons like ω, ρ and φ
mesons are produced continuously via ππ annihilation during the course of the reaction,
and further decay either into mesons or into a pair of leptons. However, as leptons are not
affected by final-state interactions, the dileptonic decay offers the possibility to look into
the fireball. In particular, the short-lived ρ meson is a promising diagnostic probe of hot
and dense nuclear matter. Also multi-strange hyperons and φ mesons carry information
on the dense phase of the collision, in particular via their collective flow, due to their small
hadronic cross sections. Finally, the bulk of the particles freezes out at densities below
saturation density. To date, essentially only these bulk particles have been measured

11



Chapter 1 The Compressed Baryonic Matter Experiment

Figure 1.3: Au+Au collision at a laboratory beam energy of 10A GeV as calculated with
the UrQMD model [11]: the initial stage where the two Lorentz-contracted
nuclei overlap (left), the high density phase, and the final stage (“freeze-out”)
when all hadrons have been formed (right). Different particles are created
in different stages of the collisions or escape from the interaction region at
different times (see text). Almost 1000 charged particles are created in such a
collision, most of them are pions. Figure credit: T. Galatyuk and F. Seck

in heavy-ion collisions at beam kinetic energies between 2 and 15A GeV (on stationary
target).

Diagnostic probes of the dense stage of the fireball such as multi-strange baryons, dilepton
pairs and charmed particles will be measured for the first time by the CBM experiment
in this beam energy range. Therefore, the CBM experiment has a unique discovery po-
tential.

The experimental challenge is to measure multi-differential observables and particles with
very low production cross sections such as multi-strange (anti-)hyperons, lepton pairs, and
particles with charm, with unprecedented precision. The situation is illustrated in the left
panel of Figure 1.4 which depicts the multiplicities for various particle species produced
in central Au+Au collisions as a function of the available energy in the center-of-mass
frame. The data points are calculated using the thermal hadronization model based on
the corresponding temperature and baryon-chemical potential [12]. Note that the dilepton
decay of vector mesons, here illustrated for the φ meson, is suppressed by the square of the
electromagnetic coupling constant (1/137)2, resulting in a dilepton yield which is about
six orders of magnitude below the pion yield, similar to the multiplicity of multi-strange
anti-hyperons.

In order to produce high-statistics data even for the particles with the lowest production
cross sections, the CBM experiment is designed to run at very high average reaction rates
at current technological limits. For setups that incorporate the Micro Vertex Detector
(MVD), this translates into a maximal average rate of 100 kHz. For measurements that
do not require the ultimate vertex and tracking precision, an average interaction rate of
up to 5 MHz can be realized, requiring the coverage of a peak interaction rate capability
of 10 MHz for the expected beam parameters [14]. The rate capability of CBM exceeds
the rate capabilities of other existing and planned heavy-ion experiments by orders of
magnitude, as illustrated in the right panel of Figure 1.4.
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Figure 1.4: Left: Particle multiplicities for central Au+Au collisions as function of the
available energy in the center-of-mass frame calculated with a statistical
hadronization model [12]. Right: Interaction rates achieved by existing and
planned heavy-ion experiments as a function of center-of-mass energy [13].
“STAR FXT” denotes the fixed-target operation of STAR.

1.3 Physics cases and observables

The CBM research program is focused on the following physics cases.

The equation-of-state of baryonic matter at neutron star densities

The relevant measurements are:

• The excitation function of the collective flow of hadrons which is driven by the
pressure created in the early fireball.

• The excitation functions of multi-strange hyperon yields in Au+Au and C+C colli-
sions at energies from 2 to 11A GeV. At sub-threshold energies, Ξ and Ω hyperons are
produced in sequential collisions involving kaons and Λ, and are therefore sensitive
to the density in the fireball.

In-medium properties of hadrons

The restoration of chiral symmetry in dense baryonic matter will modify the properties of
hadrons. The relevant measurements are:

• The in-medium mass distribution of vector mesons decaying into lepton pairs in
heavy-ion collisions at different energies (2 to 15A GeV), and for different collision
systems. Leptons are penetrating probes carrying the information out of the dense
fireball.
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Chapter 1 The Compressed Baryonic Matter Experiment

• Reference measurements of vector meson production in pN and pA collisions in order
to separate in-medium effects from elementary production processes.

• Flow measurements of charged kaons in heavy-ion collisions.

• Yields and transverse mass distributions of charmed mesons in heavy-ion collisions
as a function of collision energy.

Phase transitions from hadronic matter to quarkyonic or partonic matter at high
net-baryon densities

In the SIS100 beam energy range densities beyond five times of the normal nuclear den-
sity are reached in central collisions between heavy-ions as indicated in Figure 1.2. A
non-monotonous behavior in the excitation functions of sensitive observables would be
indicative of a transition. The relevant measurements are:

• The excitation function of yields, spectra and collective flow of strange particles in
heavy-ion collisions.

• The excitation function of yields and spectra of lepton pairs in the intermediate mass
region in heavy-ion collisions.

• Event-by-event fluctuations of conserved quantities like baryon number, strangeness
and net-charge number or proxys thereof in heavy-ion collisions measured with high
precision as function of beam energy.

Hypernuclei, strange dibaryons and heavy multi-strange objects

Theoretical models predict that single and double hypernuclei, strange di-baryons and
heavy multi-strange short-lived objects are produced in heavy-ion collisions with the max-
imum yield in the region of SIS100 energies. The planned measurements include:

• The decay chains of single and double hypernuclei in heavy-ion collisions.

• Search for strange matter in the form of strange di-baryons and heavy multi-strange
short-lived objects. If these multi-strange particles decay into charged hadrons in-
cluding hyperons they can be identified via their decay products.

Charm production mechanisms, charm propagation and in-medium properties of
charmed particles in (dense) nuclear matter

The relevant measurements are:

• Cross sections and momentum spectra of open charm (D-mesons) in proton-nucleus
collisions at SIS100 energies. In-medium properties of D-mesons can be derived from
the transparency ratio TA = (σpA → DX)/(A× σpN → DX) measured for different
size target nuclei.

14



1.4 The Facility for Antiproton and Ion Research (FAIR)

• Cross sections, momentum spectra and collective flow of charmonium (J/ψ) in
proton-nucleus and nucleus-nucleus collisions at SIS100 energies.

The intended measurements at SIS100 including the results of simulations and count rate
estimates are described in [15]. A general review of the physics of compressed baryonic
matter, the theoretical concepts, the available experimental results and predictions for
relevant observables in future heavy-ion collision experiments can be found in the CBM
Physics Book [16].

1.4 The Facility for Antiproton and Ion Research (FAIR)

The international Facility for Antiproton and Ion Research (FAIR) [17] in Darmstadt will
provide unique research opportunities in the fields of nuclear, hadron, atomic and plasma
physics [18]. The research program devoted to the exploration of compressed baryonic
matter will start with primary beams from the SIS100 synchrotron (protons up to 29 GeV,
Au up to 11A GeV, nuclei with Z/A = 0.5 up to 14A GeV), available in the so-called FAIR
Modularized Start Version (MSV) [17, Technical Document 1][19]. It might be continued
with beams from a higher rigidity synchrotron, a possible upgrade to the FAIR project in
the next phase of its operation. The layout of FAIR is presented in Figure 1.5. The beam
extracted to the CBM cave reaches intensities up to 1011 protons and 109 Au ions per
second, with the following quality requirements: i) at a distance greater than 5 mm from
the beam axis the beam halo is below 10−5 of the total beam intensity; ii) the intensity
fluctuations of the spill structure is below 50 % (average value normalized to the maximum
value), down to tens of nanosecond time scale [14].

1.5 Experimental setup

The CBM experimental strategy is to systematically perform both integral and differen-
tial measurements of almost all the particles produced in nuclear collisions (i. e., yields,
phase-space distributions, correlations and fluctuations) with unprecedented precision and
statistics. These measurements will be performed in nucleus-nucleus, proton-nucleus, and
– for baseline determination – proton-proton collisions at different beam energies. The
identification of multi-strange hyperons, hypernuclei, particles with charm quarks and
vector mesons decaying into lepton pairs requires efficient background suppression and
very high interaction rates. In order to select events containing those rare observables, the
tracks of each collision have to be reconstructed and filtered online with respect to physi-
cal signatures. This concept represents a shift in paradigm for data taking in high-energy
physics experiments: CBM will run without a hierarchical trigger system. Self-triggered
readout electronics, a high-speed data processing and acquisition system, fast algorithms,
and radiation hard detectors are indispensable prerequisites for successful operation of
the experiment. Figure 1.6 depicts the CBM experimental setup for SIS100. The CBM
experiment comprises the following components:

15
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Figure 1.5: Layout of the Facility for Antiproton and Ion Research in Europe (FAIR)

Figure 1.6: Drawing of the experimental setup of CBM
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1.5 Experimental setup

Dipole magnet
The CBM dipole provides a magnetic field integral of 1 T m needed to obtain a momen-
tum resolution of ∆p/p < 2 % for track reconstruction at beam energies of the SIS100
synchrotron or its possible upgrade. The magnet is of the H-type with a warm iron
yoke/pole and cylindrical superconducting coils. The wire has Nb-Ti filaments embedded
in a copper matrix. The operating current and the maximal magnetic field in the coils
are 686 A and 3.25 T, respectively. The magnet gap can accommodate the CBM tracking
detectors with a vertical acceptance of ±25° and a horizontal acceptance of ±30°. Further
details are available in a corresponding TDR [20].

Micro-Vertex Detector (MVD)
The MVD will provide excellent spatial precision and low material budget as required for
the identification of open charm particles and weakly decaying charged hyperons by the
measurement of their displaced decay vertices. It consists of four planar stations equipped
with thin and large-area Monolithic Active Pixel Sensor (MAPS) chips. The system layout
can be adopted to the needs of a specific run, i. e., optimized w. r. t. vertexing (VX) or
tracking (TR) capability, respectively. For the VX (TR) detector configuration, they are
located in a vacuum from 5(8) cm to 20 cm downstream of the target. The VX detector
geometry intends to achieve a precision for the determination of secondary vertices of about
50 µm to 100 µm along the beam axis. Further details are available in a corresponding
TDR [21].

Silicon Tracking System (STS)
The STS is the main tracking device of the CBM experiment capable of providing track
reconstruction and momentum determination of charged particles. The system comprises
8 detection layers equipped with double-sided silicon micro-strip sensors. The sensors are
mounted onto lightweight mechanical support ladders and read out through multi-line
micro-cables with fast self-triggering electronics at the periphery of the stations where
cooling lines and other infrastructure can be placed. The MVD and STS will determine
the tracks of charged particles inside the magnetic field over the length of 1 m downstream
of the target. Further details are available in a corresponding TDR [22].

Ring Imaging Cherenkov Detector (RICH)
The RICH detector will provide the identification of electrons via the measurement of
their Cherenkov radiation. This will be achieved using a gaseous RICH detector built
in a standard projective geometry with focusing mirror elements and a photon detector.
The detector will be positioned behind the dipole magnet about 1.6 m downstream of the
target. It will consist of a 1.7 m long gas radiator (overall length approximately 2 m) and
two arrays of mirrors and photon detector planes. The design of the photon detector plane
is based on MAPMTs in order to provide high granularity, high geometrical acceptance,
high detection efficiency of photons also in the near UV region and a reliable operation.
Further details are available in a corresponding TDR [23].
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Muon Chamber System (MUCH)
The concept of the muon detection system is to track the particles through a hadron
absorber and thus perform a momentum dependent muon identification. The absorber/de-
tector system is placed downstream of the STS, which determines the particle momentum.
In order to reduce the detection of meson decays into muons the absorber/detector system
is designed to be as compact as possible. It consists of four hadron absorbers made of iron
and 12 gaseous tracking chamber layers arranged as triplets behind each iron slab. A fifth
absorber can be installed in addition, between the last triplet and the Transition Radiation
Detector. The setup allows for efficient event selection through the measurement of short
track segments in the last tracking station triplet, and extrapolation of these tracks to
the target. For J/ψ measurements at SIS100, a MUCH start version with three chamber
triplets is sufficient. Further details are available in a corresponding TDR [24].

Transition Radiation Detector (TRD)
The Transition Radiation Detector, consisting of four detector layers grouped into one
tracking station, will serve for particle tracking and for the identification of electrons and
positrons with p > 1.0 GeV/c (γ ≥ 1000). The detector layers are located at approximately
4.1 m to 6.2 m downstream of the target, the total active detector area amounts to about
114 m2. The TRD readout will be realized in rectangular pads giving a resolution of
∼300 µm across and 3 mm to 30 mm along the pad. Every second TRD layer is rotated
by 90°. Further details are available in a corresponding TDR [25]. For the inner part of
the TRD detector a novel design with 2D spatial resolution is proposed.

Time-Of-Flight System (TOF)
An array of Multi-gap Resistive Plate Chambers (MRPC) will be used for hadron iden-
tification via TOF measurements. The TOF wall covers an active area of about 100 m2

and is flexibly located about 6 m to 10 m downstream of the target allowing to optimize
especially the kaon reconstruction efficiency and purity over the full SIS100 energy range.
The required time resolution is in the order of 80 ps. At small deflection angles close to
the beampipe the pad size is about 5 cm2 corresponding to an occupancy below 5 % for
central Au+Au collisions at 10A GeV. This area will be covered by the BFTC detector
which is foreseen to supply the event time for the highest interaction rates from the pro-
jectile spectator fragments propagating with beam velocity. It is followed at larger polar
angles with decreasing granularity by the inner and outer ToF modules, however, always
preserving the maximal occupancy of a given readout channel of 5 %. Further details are
available in a corresponding TDR [26].

Projectile Spectator Detector (PSD)
The PSD will be used to determine the collision centrality and the orientation of the
reaction plane. The detector is designed to measure the number of non-interacting nu-
cleons from a projectile nucleus in nucleus-nucleus collisions. The PSD is a fully com-
pensating modular lead-scintillator calorimeter which provides very good and uniform
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energy resolution. The calorimeter comprises 44 individual modules, each consisting of 60
lead/scintillator layers. Further details are available in a corresponding TDR [27].

Beam monitor (BMON)
The BMON subsystem consists of two diamond based beam detector stations located in
front (upstream) of the target chamber. The T0 station is foreseen to measure at moderate
rates the start time of the reaction with a precision in the order of 50 ps. The HALO station
will be used for beam monitoring, i. e., beam halo measurement.

Data acquisition and online event selection
High-statistics measurements of particles with very small production cross section require
high reaction rates. The CBM detectors, the data acquisition and online event selection
systems will be designed for peak event rates of 10 MHz, corresponding to a beam intensity
of 109 ions/s and a 1 % interaction target, for example. The rate and amount of archived
data, however, are limited by the archiving bandwidth and the costs of storage media
to about 105 events per second. Therefore, measurements with peak event rates of up
to 10 MHz require highly selective algorithms, which suppress background events (that
contain no signal) by a factor of 100 or more in real time. The event selection system will
be based on fast online data reconstruction running on a high-performance computer farm
equipped with many-core CPUs and GPUs (located in the GSI Green IT Cube). Data
acquisition and transport (DAQ) are described in this TDR, online event selection and
other software systems will be described in a forthcoming TDR.

The mCBM experiment – a CBM full-system test setup
In order to verify the challenging requirements on the various detector subsystems and
especially on the data acquisition and reconstruction system, the CBM collaboration has
initiated the installation of a full-system test setup. With the mCBM setup [28], a full
slice of the CBM detector with all of its detector subsystems can be evaluated concerning
detector stability at particle and data rates up to the anticipated nominal SIS100 rates. In
addition, the performance of algorithms for event reconstruction when exposed to real data
can be inspected and optimized. The setup is operational since end of 2018 and delivered
valuable performance numbers [29] which are partially used in the following chapters. A
detailed description of mCBM and its results is presented in Chapter 7.
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Chapter 2

Online System Overview

2.1 Overall architecture and scope of this document

A key design feature of the CBM experiment is its ability to measure at interaction rates
of up to 107 events per second, which is to-date unprecedentedly high in nuclear collision
experiments. The operation of the experiment at such high rates will give access to
very rare probes, such as multi-strange anti-hyperons, hyper-nuclei or charmed hadrons.
Naturally, this requirement sets strong constraints on the design of the detectors and their
readout electronics, but also, and in particular, to the data acquisition system. Considering
the typical average raw event size for minimum-bias Au+Au collisions of about 50 kB (cf.
Sec. 3.3.1), a peak collision rate of 10 MHz leads to an instantaneous raw data rate of
about 500 GB/s. Storage of this full raw data rate is prohibitively expensive, not only
because of the necessary storage bandwidth, but also and predominantly because of the
cost of the storage media.

This means that the raw data rate has to be reduced by at least two orders of magnitude
as a real-time process before writing to persistent media. Such data reductions can only be
achieved by the inspection of events w. r. t. physical signatures specific to the rare probes.
Typical trigger signatures are e. g., off-target decays of hyperons, the detection of which
requires at least partial event reconstruction up to track level. Such complex triggers
cannot be realized in conventional trigger logic, nor are they well suited for FPGAs; they
must be evaluated in software on CPUs and/or GPUs. In addition, the nature of heavy-ion
collisions with several hundreds of charged tracks being produced per event does not allow
the achievement of significant data reduction by simple low-level triggers implemented in
trigger hardware, meaning that the full data rate has to be forwarded for inspection in
software.

These conditions have led to the concept of the CBM data acquisition as a full free-
streaming system without any hardware trigger. The readout electronics of all detector
systems are autonomous and self-triggered; they create and push time-stamped hit mes-
sages on activation of analog readout channels above pre-defined thresholds. The task
of the online systems is to collect, aggregate and deliver this data to the online compute
farm, where event reconstruction and inspection up to the trigger decision is performed.
The software trigger decides whether data are forwarded to storage; no trigger information
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is passed backwards in the readout chain. Thus, the system is not limited by latency, but
by data throughput only.

A self-triggered readout system implies that the association of data from different detector
elements to their physical collision event must be based on their timestamp alone, which is
created in the front-end electronics (FEE). Hence, the FEE elements must be synchronized
to sub-nanosecond precision by a central timing system. The classical “event building”
task, as well as the actual high-level trigger decision, are shifted to the online compute
farm FLES (“First-level Event Selector”), to which the readout hardware is connected via
custom-developed optical links that handle clock and time distribution, data transfer, and
control communication. The links are interfaced to the online farm with a custom PCIe
card, the Common Readout Interface (CRI). On the one hand, the CRI forwards the clock
and time information received from the Timing and Fast Control (TFC) system to the
detector FEE1, and on the other hand, it reformats the data received from the detector
FEE into a form suitable for processing in the FLES.

It is evident that the online data selection task requires a substantial amount of computing
power. Our current estimates amount to about 1MHepSpec06 [30] at the highest interac-
tion rates. The online computing capacity is, however, needed only during the experiment
runtime, which will be a few months per year (cf. Sec. 3.2.1). This operation scenario
combined with the need for custom links to the experiment electronics motivates the split-
ting of the compute farm into two parts, which are in anyway physically separated. The
FLES entry nodes are commodity-hardware computers hosting the CRI interface cards to
the detectors and perform “event building” in the sense that data containers (“timeslice
components (TSCs)”) comprising the entire experiment data in a given time interval are
assembled. The input stage is data agnostic, meaning that data units are not modified
or even inspected except for their timestamps. The entry nodes will be located in the
server room in the CBM building, above the experimental area and outside of the radia-
tion zone. Their number is primarily determined by connectivity to the experiment. In
terms of the budgetary and operational responsibility, they are owned resources of the
CBM collaboration.

Online data inspection and selection are performed on the processing nodes located in the
Green IT Cube building, several hundreds of meters distant from the experimental area
(Fig. 2.1), resulting in an optical fiber link length of about 1 km. Timeslice components
assembled by the entry nodes are transferred over an InfiniBand network to the processing
nodes, which are commodity-hardware, shared resources in the operational responsibility
of FAIR-IT. A service-level agreement with FAIR will ensure that the needed resources
are supplied exclusively for CBM during the experiment run times, while they can be used
for other purposes between data-taking periods.

The hardware building blocks of the CBM readout systems are schematically depicted
in Figure 2.2, grouped according to their physical location in the CBM experiment area,
the CBM server room, and the GSI Green IT Cube. The location of the components
roughly maps also organizational aspects: while FEE and parts of the CRI FPGA design

1See Sections 2.2.3 and 2.2.4 for this fundamental design decision.
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Figure 2.1: An aerial-perspective drawing of the completed FAIR campus as planned,
showing the CBM experiment where our data will be sourced, and the Green
IT Cube where the online data will be processed.
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Figure 2.2: Schematic layout of the CBM readout system. FEEs are located at the detec-
tors in the experimental area. The FLES entry cluster is hosted in the CBM
server room. The processing nodes for online data processing and selection are
shared GSI resources and are placed inside the Green IT Cube.
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are subsystem-specific and thus in the organizational responsibility of the detector groups,
the FLES entry cluster and the software system for timeslice building are central CBM
tasks, as well as the control software framework, the TFC, and the InfiniBand connection
to the processing nodes. Hardware resources in the GSI Green IT Cube (both computing
and storage cluster) are procured and operated by GSI/FAIR and provided as a service
to CBM during the experiment operation.

A complete description of the CBM online system must include details of both the in-
volved hardware and the software systems. From a budgetary point of view, the two
are quite distinct. The procurement of the required hardware will naturally come with
substantial investment costs, which have to be elaborated and properly funded. Software
developments, on the other hand, mainly consume workforce and entail little or no invest-
ment costs, which also implies that the timeline for the final design decisions is different
compared to that for hardware development and procurement. These considerations have
motivated splitting the Technical Design Report for the CBM online systems into two
parts. The first part—this document—describes the general architecture with a focus on
systems coming with substantial investment costs. It includes the First-level Event Selec-
tor FLES entry stage (Chapter 4), the Common Readout Interface card CRI (Chapter 5),
and the Timing and Fast Control System TFC (Chapter 6). The forthcoming second
part of the TDR will describe the software systems used for online data analysis and the
operation of the experiment.

2.2 Readout architecture

2.2.1 Front-end electronics concept

The first stage of the detector readout is the analog processing and digitization of the
detector signals. For triggered systems, the FEE would be guided by a trigger signal and
this signal would determine at which time the analog signal is to be inspected, would
serve as a reference for time measurements, and would help to organize the output data.
The DAQ system would then request the data from the front-end electronics and would
combine all data of a trigger to form an event.

In a self-triggered system such as is planned for CBM, the FEE has no such guidance. It
inspects the analog signals and registers a hit when the detector signal is above a threshold.
The only concept available to organize the data is that of time. Therefore, the data of each
hit includes a timestamp. The FEE sends a continuous stream of hit data, usually in the
form of hit messages. The DAQ system continuously receives all front-end data streams
and packages the hits based on their timestamps into containers. This packaging is done
in three stages: the CRI hardware generates a stream of microslices (cf. Sec. 4.2.1), from
which the FLES software first generates timeslice components (cf. Sec. 4.2.2) and finally
complete timeslices (cf. Sec. 4.4).

24



2.2 Readout architecture

FEBFEBFEBFEBFEBFEB
ROB

ROB CRI

TFC

Clock, Synchronization,
Control commands

Data, Status,
Command responses

C
lo

ck
, 

S
yn

ch
ro

-
no

u
s 

co
m

m
an

ds

FEB Data

PCIe

100 m

ROB
ROBROBROBFEB

„b
u

sy
” 

st
at

us

1 m

Clock, Synchronization,
Control commands

GBT link
optical 

4.8 Gbps

e-link
 electrical

80 to 320 Mbps

FLES entry
node

Figure 2.3: Schematic layout of the readout building blocks for one FLES entry node. An
entry node can host more than one CRI. A CRI serves multiple ROBs, and a
ROB usually serves multiple FEBs. The TFC is a central system common to
all CRIs in CBM.

2.2.2 Data aggregation concept

Figure 2.3 shows the schematic layout of the readout building blocks for one FLES entry
node. The signals of most of the CBM detector systems are digitized by radiation-tolerant
ASICs. They are usually physically grouped on “Front-End Boards” (FEBs) which are
mounted on the detector near the signal source. At the next stage, the data created by a
group of FEBs are aggregated and sent over optical links from the detector to the FLES
entry cluster for all further processing. The aggregation stages, often called “ReadOut
Boards” (ROBs), are mounted on the detector near the FEBs they serve and are therefore
also in a radiation environment. The components developed for the GBT project [31]
perfectly match the CBM requirements for this aggregation stage and provide

• fully synchronous operation of the whole readout chain allowing clock distribution
and messages with deterministic latency (useful for time synchronization),

• the GBTx [32], a radiation-hard concentrator ASIC,
• with the e-link concept [33] a robust electrical interface towards the front-end ASICs

based on differential signals (SLVS and LVDS compatible),
• with the Versatile Link [34] radiation-hard optical transceivers for bi-directional

(VTRx) and dual uni-directional (VTTx) links,
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• and last but not least with GBT-FPGA [35] the essential FPGA design building
blocks for system integration.

Based on this assessment, CBM decided in 2014 to use GBT and Versatile Link components
in the data aggregation stage of most of the CBM detector systems. The procurement from
CERN was started immediately after this decision to participate in the joint production
for the LS2 upgrades of the LHC experiments.

The GBTx uses a custom protocol on the optical link. Therefore, the links are handled
with a custom FPGA-based board named “Common Readout Interface” (CRI). The CRI
board has a PCIe form factor, terminates the GBT links and interfaces them to the FLES
entry node.

2.2.3 Flow of data and controls

A key design decision for the readout concept was the handling of the control channel for
the front-end ASICs. The choice was driven by the STS, the most expensive and in terms
of optical link count the largest CBM detector subsystem. The STS uses double-sided
silicon strip detectors. The readout ASICs are operated with a local reference potential of
± half of the sensor bias voltage. The consequence is that each STS FEB is operated at
its local reference potential, while the ROBs, which serve multiple FEBs, operate at the
detector ground potential. A design goal of the STS FEE was to minimize the number of
connections that cross a ground domain. This led to a design of the STS readout ASIC
SMX that combines controls and data traffic over an AC-coupled e-link. This design
concept was later adopted by other CBM detector subsystems.

Each ROB carries one or more GBTx that aggregate the e-link data streams onto optical
links using the GBT frame protocol (referred to as GBT links). Because controls and
data traffic is combined at the e-link level it is also combined on the GBT links. The CRI
separates the two traffic classes. The hit data is transferred over a uni-directional high-
bandwidth DMA channel to the FLES entry node, while the controls traffic is handled via
a PIO interface.

2.2.4 Flow of clock and time

The concept of time is ubiquitous in a self-triggered DAQ system and manifests itself in the
form of time counters, which provide a local time representation, and timestamps, which
carry time as a property of an object. The front-end electronics in a self-triggered readout
system adds a timestamp to each hit it digitizes. This timestamp typically reflects the
point in time when the signal crosses the detection threshold and is determined at that time
by reading the value of a local time counter. For a coherent operation, it is essential that all
time counters in the system are incremented by frequency and phase-locked clocks (clock
distribution) and that all time counters are properly synchronized (time distribution).
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A key design decision was the choice of the base clock frequency from which all other
clock frequencies are derived. The GBTx was designed for LHC experiments and it was
natural to choose the nominal LHC bunch crossing frequency of fLHC = 40.0789 MHz as
the base clock rate from which all other frequencies are derived. This base frequency is
deeply built into the hardware as the GBTx uses a VCXO with a very limited tuning range
and the crystal is embedded in the GBTx ASIC package. The frequency fLHC is of course
an unusual choice outside of the LHC environment. The GBTx packaged for CBM has
therefore a 40.0000 MHz reference crystal, and 40 MHz is the base clock rate from which
all other frequencies in the CBM readout are derived.

The TFC system serves as the central clock and time master for the CBM readout tree.
It is based on optical links which are operated with deterministic latency in the downlink
(master to front end) direction.

Clock distribution The TFC distributes a 40 MHz master clock to all CRIs. This is
implemented via clock recovery from the TFC downlink. The CRIs use this clock to
operate all GBT links. The GBTx in the ROBs recover the 40 MHz clock from the link
and generate frequency-locked and phase-controlled e-link clocks running at 40, 80, or
160 MHz. The readout ASICs in turn derive all internal clocks from the e-link clocks.

Time distribution The TFC distributes a master time to all CRIs. This is implemented
via messages with deterministic latency (DLMs) sent out by the TFC master and used in
each CRI to synchronize a local time counter. The GBT links are operated with deter-
ministic latency in downlink direction2. This allows the implementation of mechanisms
that synchronize the local time counters in the front-end electronics with the local time
counter in the CRI and in turn with the TFC master time.

2.2.5 Time representation

The TOF system measures time with a binning of 50 ps, whilst periods of uninterrupted
data-taking, which we colloquially refer to as runs, can last hours. It is impractical to
use a unified time representation that supports the highest resolution used and is unique
across hours3. Instead, different parts of the system use resource- or data-size-optimized
time representations that can be converted to a unique absolute time in later processing.

The local time counters in the TFC system and the CRIs, as well as the timestamps of
data containers sent to the FLES system, have a length of 64 bit, which is sufficient to
represent the absolute time with the resolution of the system clock and never overflow
during the lifetime of the experiment. For the local time counters in the FEE ASICs and
the timestamps of the hit messages, such a length is neither practical nor necessary. In
this domain, compact hit messages and good uplink bandwidth utilization are key design

2latency optimized mode in GBT-FPGA lingua
350 ps resolution over 1 hour would require a 46-bit representation

27



Chapter 2 Online System Overview

criteria. The hit timestamps are short and unique only on a time scale of typically 10 µs.
The size of the hit timestamp divides the timeline into epochs. So-called epoch messages
are inserted into the uplink data stream at epoch boundaries. They often carry additional
bits of the local time counter. The required length of the FEE local time counter is
given by the timestamp length plus the number of epoch count bits carried in the epoch
messages.

This concept leads to compact uplink data formats and also compact hardware designs.
However, one consequence of this is that the interpretation of hit messages becomes context
dependent. This adds some additional data processing complexity. For each uplink, the
hit messages must be interpreted in the context given by the last received epoch message.
When uplinks are aggregated, redundant epoch messages can be removed. The hit mes-
sage is usually reformatted, with slightly expanded timestamps and reorganized channel
and link addressing information optimized for further processing. When the aggregated
data stream is packed into data containers, new epoch messages must be inserted at the
beginning to ensure that the data in the container are self-describing.
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Chapter 3

Requirements and Constraints

3.1 Introduction

Realization of the CBM experiment comes with substantial demands for data acquisi-
tion and for online processing. To plan and design an optimally functioning experiment,
prior knowledge of their requirements is needed. The current chapter documents our best
estimation on CBM data acquisition needs for operation at SIS100. The numbers are
substantiated with experience gathered from the mCBM full-system test [28, 29], which
has been on-going since August 2018. However, it must be cautioned that many issues
remain uncertain, both concerning CBM design features as well as operating conditions
not directly influenced by CBM. The numbers should be interpreted as estimates only.

The resource estimates were derived for full CBM operation. It is envisaged that CBM
will start at Day-1 with interaction rates less than its highest design capacity, with the
maximum interaction rates reached only after an initial learning and verification period.
Staging scenarios, where applicable to the data acquisition system, will be described later
in this document.

3.2 Operation of the CBM experiment

3.2.1 Annual run time and beam conditions

For the assessment of the CBM data acquisition and computing requirements, the following
assumptions on the operating conditions are made:

1. The SIS100 machine is planned to be operated up to 6000 h (250 days) per year [36].
Accelerator-wise, slow extraction to fixed-target experiments can be efficiently com-
bined with fast extraction to storage-ring experiments in a super-cycle. We assume
a beam directed into the CBM cave for 100 days, hence 2400 h or 8.6× 106 s.

2. During CBM beam times, the experiment run time is estimated to be 80 %, which
amounts to 1920 h or 6.9× 106 s per year.
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Figure 3.1: Schematic representation of the interaction rate over time (not to scale). Since
the beam intensity fluctuates over time, a rate is always specified depending
on an associated integration interval T .

3. An effective duty cycle of 75 % seems a realistic operation scenario, even when CBM
needs to share the accelerator resource with another experiment operating in tandem
using a fast extraction [14] mode. This gives 5.2× 106 s beam on CBM target per
year.

4. There are no predictions for the in-spill beam intensity variations to be expected
from SIS100. CBM and HADES require the variations to be less than two (peak to
average) [14]. For the resource estimates in this document, we assume a peak-to-
average ratio of two. It should be noted that this means a substantial improvement
of the beam quality with respect to SIS18.

3.2.2 Interaction rates and CBM setups

In regards to the interaction or data rates, the following terminology is used (cf. Fig. 3.1):

• Peak rate: the maximum instantaneous rate, averaged over a time window of 10 µs;

• Average rate: the mean in-spill rate, averaged over beam intensity variations on a
time scale of ms;

• Sustained rate: the mean data-taking rate during operation, averaged over the ma-
chine duty cycle on a time scale of 10 s.

For the calculations in this document we assume:
Rpeak
Raverage

= 2; Rsustained
Raverage

= 3
4.
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The CBM detector systems, except for the Micro Vertex Detector (MVD) and the Pro-
jectile Spectator Detector (PSD), are designed for a peak interaction rate of 107/s for
minimum-bias Au+Au collisions at pbeam = 12AGeV/c. In Au+Au collisions, the MVD
performance is limited by the load from delta electrons, produced by beam particles in
the target, to an average beam intensity of 107/s, corresponding to an average interaction
rate of 105/s for a 1 % target. The PSD is limited by the time constant of the wavelength
shifters and photo-detectors to a peak interaction rate of 106/s.

CBM is designed to operate with flexible combinations of detector systems (“setups”)
serving different physics objectives. For this document, we consider the following setups,
which are decisive for the readout and online processing requirements:

• Hadron setup: it comprises the Silicon Tracking System (STS), the Transition Ra-
diation Detector (TRD), and the Time-of-Flight System (TOF). This setup gives
access to hadronic probes like, e. g., multi-strange hyperons or hyper-nuclei. It can
be operated at the highest interaction rates. Adding the PSD for the determina-
tion of the event plane (e. g., for flow measurements) limits the operation to a peak
interaction rate of 106/s.

• Electron setup: it comprises the Hadron setup plus the MVD, the Ring-Imaging
Cherenkov Detector (RICH), and the PSD. In this setup, both hadronic probes and
electron pairs can be measured simultaneously. The MVD limits the operation of
this setup to average interaction rates of 105/s.

• Muon setup: it comprises the STS, the Muon Detection System (MUCH), the TRD,
and the TOF. This setup is exclusively used to measure muon pairs. It can be
operated at the highest interaction rates.

The CBM beam times will be allocated to the setups according to the physics priorities
agreed upon prior to each data-taking campaign. Switching between the setups necessi-
tates moving or exchanging of detector subsystems.

3.2.3 Online data flow

Raw data delivered from the detector front-end electronics are aggregated by a number of
different readout chains and streamed to the FLES entry cluster, a set of server computers
equipped with custom FPGA interface cards (“CRI”). The DAQ system is designed to cope
with a maximum instantaneous interaction rate of 107/s (Au+Au at pbeam = 12AGeV/c).
The DAQ hardware and the FLES entry cluster will buffer in-spill beam intensity vari-
ations; the average over the duty cycle can be established in the entry cluster or in the
compute cluster.

The size of the entry cluster is determined by bandwidth and connectivity to the exper-
iment rather than by computing power. It will be located close to the experiment; the
responsibility for its design and operation is with CBM. The entry cluster is connected via
long-range InfiniBand to the compute cluster located in the Green IT Cube. The Flesnet
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hadron setup electron setup muon setup
event size / kB event size / kB event size / kB dark rate / MB/s
CRI FLES CRI FLES CRI FLES CRI FLES

BMON – – 0.8 1.6 – – 1 0
MVD – – 15.0 15.0 – – 3 456 3 456
STS 18.4 18.9 18.4 18.9 18.4 18.9 7 500 7 160
MUCH – – – – 4.5 6.0 6 524 7 460
RICH – – 8.4 8.4 – – 792 792
TRD 30.5 40.7 37.2 49.6 3.1 4.1 7 100 4 339
TOF 6.0 8.5 6.5 9.2 1.4 2.0 3 481 74
PSD – – 2.6 2.6 – – 2 2
Sum 54.9 68.1 89.0 105.4 27.4 31.0 28 873 23 282

Table 3.1: Raw data average event sizes and dark rates sent to CRI and FLES stages for
minimum-bias Au+Au collisions at pbeam = 12AGeV/c. The numbers include
both raw data messages and overhead.

software running on entry and processing nodes aggregates raw data into timeslices, which
are delivered to the processing nodes for processing in real-time. The role of online data
processing is the selection of a subset of the raw data for permanent storage.

3.3 Data rates from detectors

3.3.1 Raw data event sizes and detector dark rates

The raw data event sizes were evaluated by simulation of minimum-bias Au+Au collisions
at pbeam = 12AGeV/c generated by UrQMD. The simulation yields the number of raw
detector hits (“messages”) per event for each detector system. This number is weighted
by both the single-message size according to the current design of the front-end ASICs
to determine the event size as delivered by the detector hardware to the CRI, and the
single-message size within a FLES timeslice as delivered by the CRI design component of
the detector to the FLES entry cluster.

The numbers include all anticipated background and overhead components that depend
on the interaction rate. Where applicable, the effect of beam particles has been included
in the average event sizes as a sum, assuming a beam/target interaction probability of
1 %. The dark rate numbers of the detectors include both the anticipated data from noise
and digital readout overhead such as periodic epoch messages.

The data values are given in bytes, with the physical link bit rates being slightly higher
due to the overhead introduced by the encoding of the links (e. g., from 8 bit to 10 bit).
The overhead introduced by the microslice and timeslice containers is small (cf. Sec. 4.2.4)
and not considered here.
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CRI MB/s per CRI
count average maximum

BMON 1 162 162
MVD 5 991 991
STS 72 1 413 1 696
MUCH 33 1 130 1 469
RICH 8 204 204
TRD 68 3 054 3 970
TOF 25 1 708 2 220
PSD 1 266 266
Total 213 1 741 3 970

Table 3.2: Subsystem connectivity and required CRI bandwidths for the highest-rate se-
tups in which each respective subsystem is used.

Table 3.1 summarizes our estimations. Individual contributions are discussed with further
details in Appendix A. The event sizes given in Table 3.1 correspond to the largest collision
system for CBM at SIS100 (Au+Au at pbeam = 12AGeV/c). The lower the collision energy
or the smaller the number of collisions leads to smaller raw data events. For instance, the
event size for Au+Au collisions at pbeam = 4AGeV/c is 70 % of that of top SIS100 energy.

3.3.2 Raw data rate to the FLES stage

Table 3.2 summarizes the bandwidth requirements per CRI of the subsystems for the most
data-intensive of the three setups and run conditions. Note that the RICH is designed for
higher interaction rates in anticipation of a potential future MVD upgrade, so the load
on its CRIs in the electron setup is modest compared to the other detectors. The PSD
and beam monitor (BMON) subsystems are each assigned one CRI, although they do not
fully utilize it, in order not to mix data from different systems on a single CRI.

As the layouts of the readout trees of the detectors have to follow geometrical and practical
constraints, the distribution of the overall data rate of each subsystem across its CRIs will
not be even. For the STS, the factor between data rate of the most active CRI and
the average CRI data rate has been simulated to be approximately 1.2. For most of the
other subsystems, this factor is estimated to be 1.3. With an additional factor-two safety
margin, the maximum bandwidth required at the CRI/FLES interface is approximately
8 GB/s. The total number of CRIs will be around 200 (cf. Sec. 5.2.4).

3.3.3 Total raw data rate

Table 3.3 shows the data rates from the detectors to the FLES entry cluster for the different
setups and run conditions. The “dark” column summarizes the data rate that is expected
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setup hadron electron muon dark
avg. int. rate/1/s 5× 106 1× 105 5× 106 0

GB/s GB/s GB/s GB/s
BMON – 0.2 – 0.0
MVD – 5.0 – 3.5
STS 101.8 9.1 101.8 7.2
MUCH – – 37.3 7.5
RICH – 1.6 – 0.8
TRD 207.6 9.3 24.8 4.3
TOF 42.7 1.0 9.9 0.1
PSD – 0.3 – 0.0
Sum 352.1 26.4 173.9 23.3

Table 3.3: Average total data rates sent from the detectors to the FLES stage. The stated
rates include raw data messages and overhead.

during commissioning without beam. The numbers follow from the considerations of
Sections 3.2.2 and 3.3.1.

If averaging over the machine duty cycle is assumed to not happen before the Green IT
Cube, the average in-spill interaction rates have to be applied, so these numbers describe
the relevant requirements for both the FLES timeslice building operation and the trans-
mission to the online processing in the Green IT Cube.

As the highest bandwidth requirement exists in the hadron setup, an upper limit esti-
mation for the total data rate is 400 GB/s. This rate scales linearly with the average
interaction rate (5× 106/s in the hadron setup) and with the raw data event size (see
Table 3.1). Applying a contingency factor of 1.5, we arrive at a minimum bandwidth
requirement of 600 GB/s.

34



Chapter 4

First-level Event Selector

The First-level Event Selector (FLES) is the central data handling and event selection
entity of the CBM experiment. It is the endmost part in the CBM readout chain. The
FLES implements the interface to the detector readout, combines all data, and performs
the global event selection by performing a full online reconstruction and topological analy-
sis. The basic design is similar to a traditional high-level software trigger, as it is employed
in virtually all modern high-energy physics experiments. However, the exclusive, software-
only event selection approach of CBM adds distinct challenges not found in those classical
systems.

This chapter describes the FLES entry stage which is defined as the data path between
the interface to the subsystem readout chains and the interface to the online analysis.

4.1 Architecture

The FLES is designed as an HPC cluster. It will be built from both COTS and custom
components. The scalable architecture is specially laid out for achieving the required
throughput of the incoming experiment data with sufficient redundancy and for providing
the necessary computational efficiency for flexible real-time data processing. The design
goal is to be able to scale to input data rates exceeding 1 TB/s. The conceptual design of
the FLES is shown schematically in Figure 4.1. The FLES cluster can be divided into two
sub-clusters: An entry node portion located close to the experiment in the CBM service
building and a processing node portion located at the central Green IT Cube data center
at GSI approximately 1 km of cabling distance away from the experiment. Both portions
share a common RDMA-enabled InfiniBand network.

Entry nodes are part of the FLES entry stage and provide the connectivity to the read-
out systems. They receive all data from the detectors and prepare them for subsequent
handling and processing. Therefore, they will be equipped with FPGA cards, the CRI (cf.
Chapter 5), which implement the custom readout link and the interface between custom
electronics and host. Due to the direct link to the detector readout systems, the entry
nodes have to be located relatively close to the detector. The readout links are designed
only for short ranges. Additionally these links carry timing and fast control information
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Figure 4.1: Overview of the First-level Event Selector (FLES) architecture and its posi-
tion within the CBM data flow. The foreseen design consists of two clusters,
an entry node cluster with the CBM-specific input interfaces, and a shared
processing node cluster. To perform timeslice building, the entry nodes and
both clusters are connected by a fast network.

which is susceptible to propagation delays. Further, the favorable multi-mode optics used
here is not sufficient to span the distance to the Green IT Cube data center.

The processing nodes provide the needed computing power to execute the online analysis
tasks. To achieve the required throughput and computational efficiency, it is foreseen to
extensively make use of vectorized code and many-core architectures such as GPUs [37].
The processing nodes will be part of the common FAIR computing resources hosted in
the central Green IT Cube data center. This allows for efficient resource sharing by
permitting cross-experiment use during non-CBM beam times. The building yields an
ideal infrastructure and allows for an economic and energy efficient use of servers. The
local separation from the entry stage is possible because the FLES collects the experimental
data untriggered and does not require fast access to the front-end electronics. However,
with a linear distance of approximately 350 m to the CBM building, it is expected that
the data transport has to bridge, including cable routing, a distance of about 1000 m (cf.
Sec. 4.5.3). This distance exceeds common, fast intra-data center interconnects based on
multi-mode optics and requires the application of medium-range or long-haul techniques.
A detailed description of the network design is presented in Section 4.5.
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Figure 4.2: The conceptional idea of timeslice building. Data streams from the different
detector links are partitioned into time intervals, labeled timeslice components,
which cover the same period for all inputs. All components from one period
are combined into a processing interval, called a timeslice, and sent to the same
processing node (PN). Data of subsequent intervals are distributed to different
nodes to balance the computational load.

4.1.1 Timeslice building

Data enters the FLES distributed across all entry nodes of the cluster. With input links
associated with a specific geographic region of the detector, data from one physical event
is distributed across the cluster. However, for efficient and scalable event selection, it
is crucial that the analysis of a specific event can run locally, on a single node, with
limited inter-node communication. Therefore, the FLES distributes the data before event
selection, such that analysis tasks on different processing nodes can process containers with
complete event data from the full CBM detector system independently from one another.1
This process is called timeslice building, and its basic concept is shown in Figure 4.2. Input
data streams are divided into time intervals, which cover the same period2 for all inputs.
Data of a single stream acquired in such an interval are called a timeslice component (TSC).
All TSCs of a given period are combined into a full processing interval, a timeslice, and
transferred to a selected processing node. Consequently, a timeslice contains data from the
entire CBM detector system, for a small, limited duration of the experiment. Subsequent
timeslices are sent to different processing nodes to distribute the load across the cluster.

Timeslice building is similar to classical event building with the main differences being:

• Timeslice building has to be performed at the full primary detector data rate.

• The data combined to timeslices is distributed across the cluster and not reduced
into a single stream.

1The analysis tasks may still need to exchange some information such as, for example, regarding calibra-
tion, but the corresponding amount of communication is negligible.

2With respect to the time the physics events took place.
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• Due to the self-triggered nature of the CBM architecture, there is no explicit event
separation or any other kind of global data subdivision available at this point in the
processing chain. Thus, the timeslice building has to be performed using hit time
information as a reference.

Timeslice building implies sustained, any-to-any communications between entry nodes and
processing nodes. A fast network with sufficient bandwidth to handle the full FLES input
data rate is needed. The high data rate and communication pattern favor an RDMA-
enabled network. It is foreseen to use an InfiniBand network fabric. The developed FLES
timeslice building framework makes heavy use of the provided RDMA capabilities.

Timeslice overlap To be able to analyze timeslices truly independently from each other,
the boundaries between subsequent timeslices need special attention. Without an event
definition at this stage, cuts to form TSCs are arbitrary with respect to the physics event
contained. Hit messages of one event may end up in different TSCs. Analyzing incomplete
event information at the boundaries can lead to analysis problems and false conclusions
about the event. A trivial solution to this problem is to define an exclusion zone around
the boundaries. Events with a reconstructed t0 in this zone are considered potentially
incomplete and are discarded. The required size of the exclusion zone depends on the
interaction duration of a physics event with the detector, and more importantly, on the
time calibration of the detector front-end electronics components. Even though all front
ends have a synchronized clock, the absolute time synchronization may not be perfect.
Similarly to spatial alignment, this can be shifted during the analysis. Thus, the apparent
duration of an event before alignment can be stretched. As partitioning into timeslices can
only be based on front-end time information, this can lead to unfavorably large exclusion
zones.

For the FLES, a more elaborated solution without data exclusion zones is foreseen. Sub-
sequent timeslices are created with an overlap. Events in the middle of the overlap region
can be fully reconstructed for both timeslices. Depending on the reconstructed collision
time t0, the event is assigned to one or the other timeslice. The input interface has to
facilitate the creation of such an overlap region. A more detailed discussion regarding the
overlap region can be found in Section 4.2.4.

4.1.2 Processing stages

For the design of the entry stage, how the data is processed on the entry node is significant.
Specifically, whether an analysis step altering the data set takes place before the timeslice
building, or whether the received data is transferred directly to the processing nodes. Local
data processing before timeslice building is especially useful if it can significantly reduce
the data size, and therefore reduce the bandwidth required for timeslice building. If this
is not the case, the data could be transferred to the processing nodes before performing
any analysis step at the same cost, but with a much reduced complexity. This includes
especially scaling to different load scenarios (cf. Sec. 4.1.3).
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According to the current planning of the detector subsystems, there is no potential for
savings expected from local processing before timeslice building. The detectors will deliver
self-triggered, zero-suppressed data in already size-optimized data structures. A simple
threshold-based reduction or compression in software is therefore excluded. Detectors
plan to implement more elaborate compression in the upstream hardware components.
The MVD, for example, foresees a cluster finder in the FEE [38]. With size-optimized
detector data formats, it has to be expected that the data for the analysis will first need
to be inflated, as the messages have to be decontextualized. This includes, for example,
the conversion of local, compressed detector time to global time or mapping from channel
identifiers to coordinates.

The design of the FLES entry stage is, therefore, based on the assumption that the majority
of the data is passed on directly to timeslice building. Consequently, the data model
and cluster design are optimized for a single processing stage on the processing nodes.
Exceptions are link-local calibrations and QA calculations, which may require the complete
history of a detector section to be continuously monitored, e. g., to calibrate the drift time
of that detector. It is assumed, however, that these calculations require little computing
power, are carried out in parallel to the analysis itself and do not change the content of
the data stream.

4.1.3 Cluster size and scaling

The different construction stages and configurations of the experiment (cf. Sec. 3.2.2)
have vastly different needs with respect to online event selection. Consequently, the FLES
architecture has to support a wide range of scenarios. In terms of hardware resources,
this will be mainly achieved by scaling the number of processing nodes. Nodes not used
for the CBM online processing can be used for other analysis tasks or assigned to other
experiments. The FLES framework has to support scaling the compute resources in this
manner. The exact amount of computing power needed is a topic of active investigation.
The working assumption for this document is that the full cluster consists of around
600 processing nodes. The computing requirements will be discussed in the Online TDR
Part II.

The size of the entry cluster cannot be dynamically scaled as it terminates point-to-
point connections to the detector systems. However it is foreseen to build this cluster in
predefined steps. For the commissioning phase and early start-up phase, full connectivity
to the detector, but very limited throughput and compute power is required. In this case,
it is also feasible to scale down the number of entry nodes and network equipment to a
minimum needed to provide sufficient connectivity. This allows to purchase some of the
equipment much later in the installation phase. This start configuration of the cluster can
then be upgraded to the full entry stage as needed. The full entry cluster is expected to
consist of around 100 nodes. The detailed design and size of the FLES entry cluster is
discussed in Section 4.5.
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4.1.4 Flow control and congestion management

The FLES design has to take overload situations into account. Overload can happen for
several reasons. For example, neither the PCIe host interface nor the timeslice building
network guarantee a certain minimum bandwidth. Processing resources are naturally lim-
ited and may be insufficient to cope with the event data in edge cases. Furthermore, the
input interface design may serve as an additional concentrator stage, which can dynami-
cally share the PCIe bandwidth between more input links than are required to saturate
the PCIe interface.

To be able to deal with overload conditions gracefully the FLES implements a closed
back pressure path from the online processing interface on one end of the data transport
chain to the detector subsystem interface on the other end to ensure data is not lost
in an uncontrolled manner. The FLES does not foresee its own, fine-grained throttling
mechanism. The resulting back pressure in the CRI is forwarded to the central throttling
system, which determines how to cope with the situation. The exact mechanism here is
the subject of ongoing studies (cf. Chapter 6).

The central throttling system and the closed back pressure path cover all critical cases.
However, at the time of writing, it is not clear how efficient the central throttling will be
in terms of discarding a minimal amount of data. It can, therefore, be of advantage to
further limit the back pressure. This can be achieved efficiently by discarding all timeslice
components forming a timeslice in a controlled manner before timeslice building. As this
task requires coordination across all entry nodes, it is conducted by the central timeslice
building framework.

4.2 Data model

The central task of the FLES entry stage is data handling, i. e., receiving the data from
the detector front-end electronics and presenting these data in a well-structured format
to subsequent timeslice building. To achieve efficient data handling, the design has to be
tightly coupled to the needs of the timeslice building. Consequently, a suitable data model
is needed that takes into account also subsequent data handling steps to avoid unnecessary
reformatting at later stages. Nevertheless, timeslice building is the most demanding step,
and thus, the driving factor.

Analyzing the needs of timeslice building (cf. Sec. 4.1.1), the data model should facili-
tate:

• Efficient and subsystem-agnostic data handling.

• Partitioning of subsystem data into time intervals that can be combined to pro-
cessing intervals suitable for analysis, i. e., containing data from the same period of
experiment time for all contributing subsystems and processable independently from
each other.
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• Creating overlap regions of configurable length between subsequent intervals to avoid
losing events at the borders of processing intervals.

The specific nature of the self-triggered CBM front-end electronics leads to several chal-
lenges when trying to fulfill these requirements. The front-end electronics are designed to
produce streams of hit and control messages in a private format, which differs for most
subsystems, referenced to as detector message format. Representing single hits, these mes-
sages are small in data size but high in frequency. The STS, for example, expects 32-bit hit
messages at rates of 10 MHz/cm2 for the innermost regions [39, 22]. The private message
format allows subsystem-specific optimization and more efficient data transport within the
subsystem than a common format would. However, it presents a challenge for data hand-
ling in the FLES. At least the time information from each message is needed to partition
the streams adequately. Trivial partitioning into blocks of fixed data size is not possible
as detectors are self-triggered, and thus, data is zero-suppressed. Ergo, fixed-size data
blocks do not correspond to time intervals. Additionally, detector message streams are in
general stateful, i. e., the information depends on the history of the stream. One example
is a commonly used data compression method using epoch messages (cf. Sec. 2.2.5). These
markers carry the uppermost bits of the time information in order to reduce the size of the
message timestamps [40, 41, 39]. Another example are time over threshold measurements
creating separate messages for leading and trailing edge of a signal [41]. Consequently,
handling data on the detector message level would require subsystem-specific logic along
the whole FLES data chain. This is impractical for a readout system of this complexity as
it prohibits the necessary separation between subsystems and DAQ logic. It would lead to
an inflexible system in which every change in data format or addition of new subsystems,
e. g., for test setups, needs to be reflected in the DAQ system as well. Also, the resulting
system would be more prone to errors as the required non-uniform handling of corrupted
data could more easily stall the whole chain.

Converting all detector data into a global and stateless format would solve some of the
presented issues, but is not practical for a large, heterogeneous system like CBM. It contra-
dicts subsystem-specific optimizations. Additionally, the expected inflation in data size,
e. g., from converting each message timestamp to a full, global timestamp, makes such a
step inefficient as it increases the needed network bandwidth for timeslice building. In the
following section, a concept for structuring the input data streams is presented. It aims to
allow for efficient FLES data handling without the need to convert all detector messages
into a common global format or requiring subsystem-specific logic along the whole data
handling chain.

4.2.1 Microslice concept

As a common data model for the FLES, the microslice concept has been developed. The
underlying idea of this concept is to de-contextualize detector data streams by encapsu-
lating them in a lightweight, globally defined container format.
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Figure 4.3: Partitioning of a detector message stream into microslices. The data stream
is partitioned according to the message timestamps into fixed-length time in-
tervals. Each microslice consists of a descriptor holding the start time and
metadata in a global format and a self-contained data segment with all detec-
tor data related to the time interval of the microslice.

For traditional triggered experiments, the central trigger information gives a natural way
of partitioning data. All data related to a specific trigger is grouped and added into a
suitable data container. In CBM, the absence of such a global signal or any other kind
of event definition at this stage of the readout chain prohibits such a partitioning scheme.
Instead, the microslice concept foresees a time-based partitioning into short, context-free
intervals packed into common container format. These containers are called microslices.
Each microslice holds a predefined, constant period of data for a specific region of a
detector. Microslices are designed to enable efficient, data-agnostic timeslice building,
that is only relying on information provided by the metadata of the containers.

Figure 4.3 visualizes the microslice partitioning scheme. Each input channel is parti-
tioned individually. A microslice consists of a descriptor in a global format and a block
of subsystem-specific data. The descriptor provides all information needed for data hand-
ling and timeslice building—most importantly the start time of the data block in global
time.3 The data block holds all detector data of the specified time interval. To ensure
microslices can be handled freely and independently from each other, the data block is
required to be self-contained, i. e., the information does not depend on any previous or
subsequent interval. In the case of epoch messages, for example, this can be achieved
by simply repeating the latest epoch message at the beginning of each microslice. The
exact format of the microslice data content can be chosen freely by the subsystems. This
enables flexible, specifically tailored implementations for each subsystem. To differentiate
this format from the raw detector messages, it is called detector data format as opposed
to detector message format. Required conversions can be carried out independently and
efficiently at the CRI stage, resulting in a good separation of the systems. It should be
noted that the data content may still be a stateful stream as long as the initial state is
provided. However, it is conceivable to transfer detector messages into a completely new
format if beneficial at this stage.

To enable efficient, scalable data handling, microslices are produced at a given, fixed rate.
The covered time interval is short compared to a timeslice, hence the name microslice.

3Message time stamps generally use subsystem-specific, local time.
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Figure 4.4: Microslice-based timeslice component (TSC) building. The time information
in the microslice descriptor can be used to assign microslices to a TSC. Overlap,
in this example one microslice, is created by assigning the same microslice to
multiple TSCs. Different TSCs are sent to different processing nodes.

The fixed rate allows random access in the time domain. A timeslice can be created as a
collection of microslices. There is no time overlap between microslices, whereas timeslices
do foresee time overlap. The design aims to create precisely one microslice for each time
interval. In case no data is available, an empty microslice will be generated. With this,
the microslice can serve as a heartbeat to easily monitor the health of the readout system.
Timeout conditions can be decided a priori as it is clear which microslice will arrive.
Irregularities in the data stream, such as missing microslices, can be detected easily.

In summary, microslices are small, time-addressable subintervals that allow fulfilling the
aforementioned requirements, including the creation of overlap during timeslice building.
A microslice is the smallest entity that the FLES data path handles.

4.2.2 Timeslice component building

The microslice data model enables efficient FLES timeslice building based on handling
only microslices. Figure 4.4 illustrates the idea of microslice-based timeslice component
(TSC) building, which is the first stage of timeslice building.

The current implementation works with a common microslice rate and phase across all
inputs, i. e., microslices across all inputs start at the same time and have the same length in
time. This enables a very efficient timeslice building algorithm, as creating TSCs can rely
on combining a given number of containers instead of checking every single timestamp.
However, in the final system, it may be desirable to permit different microslice rates
across the detector subsystems, and in extension possibly even microslices of arbitrary
length. While this is fully supported by the general concepts, it will lead to a more
complex timeslice building implementation. Therefore, it will have to be decided carefully
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if there is a requirement that warrants the additional complexity. In the following, a fully
synchronized microslice production is assumed.4

Given input data streams in microslice format, timeslice building can be performed via the
following algorithm. To create TSCs on an entry node, determine all microslices needed to
cover the period of the TSC, including the necessary overlap. In the case of equally-sized
microslices, this task is reduced to picking a fixed number of containers, e. g., 100 for the
core region plus 1 microslice overlap in the example figure. Each TSC is then sent to the
respective processing node. The collection of TSCs with the same index from all entry
nodes constitutes a timeslice. Overlap can be achieved by doubling a certain amount
of microslices at the boundary of subsequent TSC. For an overlap of one microslice, for
example, the first TSC consists of microslice [0, 100] and the second of microslice [100, 200],
which effectively doubles microslice 100.

The algorithm enables efficient data handling and network usage, as only TSCs and not
single microslices are transmitted, which yields larger packages and less transaction fre-
quency. Even more importantly, the network package size and transaction frequency do
not depend directly on the size of the microslice, which allows altering the microslice size
more freely.

4.2.3 Scaling to various running scenarios

The different CBM configuration and running scenarios present a wide range of input rates
to the FLES. As discussed in Section 4.1, the FLES has to provide full connectivity, but
the throughput capabilities should scale with the needs of the experiment.

The microslice concept takes this into account by foreseeing to adapt the length of the
microslice to the respective scenario. The microslice length is chosen proportionally to
the expected load such that the average microslice data size stays roughly constant. This
keeps the fractional overhead of the data transport constant as opposed to a fixed overhead
independent of the data rate. A reduced rate of microslices, with otherwise unchanged
parameters, reduces the timeslice rate and thus the transaction frequency on the network.
Assuming the number of processing nodes is reduced proportionally as well, the workload
characteristics of a single processing node stay constant.5 This allows omitting special
scaling adaptations on the processing nodes.

4.2.4 Performance studies

To benchmark the microslice data model with respect to performance in the final system,
it is interesting to check the introduced overhead and partitioning efficiency for microslice-
based timeslice building.

4It is foreseen to adapt the microslice rate to different running scenarios (cf. Sec. 4.2.3). Thus a set of
rates is needed.

5Not accounting for positive effects of the reduced processing complexity for lower interaction rates.
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Target timeslice size

A prerequisite to judge the feasibility of the microslice concept is the timeslice target size.
With most parts of the system still under development at the time of writing, the optimal
timeslice size is unknown as it heavily depends on parameters such as the performance of
the analysis software and the number of processing nodes. Therefore, it is too early to
determine the final timeslice size. However, reasonable assumptions can be made.

The optimal timeslice target size is a trade-off between overhead and required buffer ca-
pacity. Larger timeslices are less demanding for the system, as overhead due to overlap
and transaction frequency is reduced. On the other hand, the demand for buffer space for
timeslice building depends directly on the size of the timeslice (cf. Sec. 4.5.2). For entry
nodes, these are the buffers that allow to to parallelize the network transfers. For pro-
cessing nodes, a timeslice queue is needed to derandomize timeslice availability and ensure
maximum utilization of the compute resources. Large timeslices will withhold significant
amounts of memory from the analysis task.6 Excessively low transaction frequencies are
also not preferable. If processing times reach the order of minutes, the system gets slow
and ponderous to control.

As a working hypothesis, a timeslice length of 10 ms and a respective transaction rate of
100 Hz is assumed. With a total input data rate baseline of 1 TB/s, the average timeslice
data size then calculates to 10 GB. Considering as an example 600 processing nodes,
every node receives timeslices at 0.16 Hz or every 6 s. This results in both buffer space and
interaction frequency in practical ranges and shows that also even larger timeslices could
be feasible. As a result, in the following, a timeslice target size of 10 GB is assumed.

Needed timeslice overlap

An essential parameter to benchmark the data model is the required timeslice overlap. The
overlap, on the one hand, depends on the temporal extent of the event to be measured.
On the other hand, it depends on the accuracy of the assignment of measurements to time
intervals. The duration of an event, i. e., the period in which the resulting particles interact
with the detector, is dominated by the flight time of low-energy, secondary particles [42].
For CBM, this duration is in the range of 100 ns, which should be covered by the overlap.

How precisely a measurement can be assigned to a time interval depends on the intrinsic
time resolution of the detector as well as the accuracy of the time distribution. The time
resolution differs significantly between the different detector systems. The intrinsic time
resolution for STS is about 5 ns while the integration time of the MVD is 5 µs. TOF
aims for a total time resolution of 80 ps. These differences clearly show that the necessary
overlap must be defined separately for each detector system.

6The buffers for analysis should be independent of the timeslice size as timeslices are transport containers
independent of any physical properties. If required, a timeslice could be easily split into several slices
after timeslice building.
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The accuracy of the time distribution is mainly limited by the achievable calibration ac-
curacy between the individual leaves of the time distribution tree. The clock, on the other
hand, can be distributed with very high precision. The CBM time distribution system
currently does not plan to directly determine the time offsets in the time distribution tree,
e. g., through a round trip measurement. Instead, the necessary calibration parameters
must be determined in software using physics events that are easy to analyze, e. g., traces
of cosmic rays.7 The calibration can be applied directly in the front-end hardware and as
part of the analysis in software. With regards to the FLES input interface and timeslice
building, only the accuracy of the hardware calibration is decisive, as only this is available
before the analysis. The desired accuracy of the hardware calibration is the subject of
ongoing discussions.

As this property of the time distribution system is not known, a perfect time distribution
system is assumed in the following. This represents the more demanding scenario, as
smaller required overlaps cause higher overhead. For the minimum required overlap, 100 ns
are assumed.

Microslice overhead

The optimal size of a microslice is a trade-off between fine-grained access and small pack-
aging overhead. The size of a microslice has to be comparably small to allow for efficient
handling of timeslice overlap. On the other hand, smaller microslices introduce more over-
head due to the overhead of the containers. These two sources of overhead are analyzed
in the following. In general, the fractional overhead can be defined as

O = overhead size
data size .

Container overhead The container overhead is caused by the addition of metadata to
each microslice. To determine an optimum point, it is useful to regard the overhead in
relation to the core size of a TSC, sTSC, and the average data size of a microslice, sMS.
As the system acts on time and not data size, these sizes have to be derived from the
link data rate. Because the momentary data rate fluctuates, all calculations are based on
average data rates. Consequently, all results must be interpreted as average values. The
fractional container overhead Ocont of a TSC can be defined as

Ocont = ocont · ncore
sTSC

(4.1)

with
ncore =

⌈
sTSC
sMS

⌉
the number of core microslices and ocont the absolute size of overhead for each container,
i. e., the amount of data added to the original data. For the current hardware imple-
mentation ocont originates from two sources. The first is the microslice descriptor that is

7The time distribution system guarantees the required timing stability even across link resets (cf. Sec. 6.1).
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added to each container. The current descriptor size sdesc is 32 B, including additional
metadata such as system identification and error flags. The second source is padding to
a specific block size, which is introduced by the DMA engine (cf. Sec. 4.3.4). The current
setting uses a block size sDMA of 128 B. If the timeslice building copies continuous mem-
ory blocks, this padding cannot be easily removed and is therefore accounted as overhead
here. Assuming random data sizes, the average padding is half the block size. Therefore,
the container overhead size for the current implementation is given by

ocont = sdesc + sDMA
2 = 96 B .

Overhead from overlap The second contribution of overhead originates from the fact
that the overlap has to be created from an integer number of microslices. In particular,
this contributes if the length of a single microslice exceeds the length of the overlap interval.
The overlap-related fractional overhead OMS

over can by defined as

OMS
over = (sMS + ocont) · nover − lover · rlink

sTSC
. (4.2)

with
nover =

⌈
lover · rlink
sMS

⌉
the number of needed overlap microslices, lover the minimal required length of overlap for a
certain subsystem and rlink the average link data rate. As lover depends on the subsystem,
all overheads are calculated for individual TSCs and not for complete timeslices.

To test the feasibility of the overlap concept itself, Equation 4.2 can be altered to include
all overlap, instead of only the extra overlap resulting from the limited fragmentation.
The fractional overhead Oover created by the full overlap is then given by

Oover = (sMS + ocont) · nover
sTSC

(4.3)

This distinction is particularly important for subsystems where the needed overlap ap-
proaches the length of the microslice. In this case, the minimal overlap contributes a
noticeable offset to the overhead.

Total overhead Figure 4.5 depicts the different overhead components and the TSC frag-
mentation versus the microslice size for typical parameters assumed for fast detectors.
For small microslices, the container overhead is the dominating factor. As expected, it is
proportional to 1/sMS as fewer and fewer microslices are created for the fixed-size TSC.
For larger microslices, the overhead from overlap becomes dominating. As soon as a single
microslice provides sufficient overlap, the overhead from overlap rises linearly with the
microslice size. Due to the small lover, only this linear part is visible. The overall overhead
shows a minimum of 0.62 % at a microslice size of approximately 31 kB or 31 µs. More
importantly, the overhead is well below 1 % for a wide range of microslice sizes. As the
timeslice fragmentation is not crucial, the point of operation can be chosen freely. The
resulting low overhead underlines the feasibility of the basic concept.
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Figure 4.5: Microslice overhead for a fixed TSC size and different microslice sizes. The
dashed line shows the timeslice fragmentation in the number of core microslices.
The solid lines show the different overhead components. The total overhead
shows a minimum at around 31 kB.

4.2.5 System constraints

A real-world system can only provide limited resources. Concerning the FLES data hand-
ling, in particular, the finite size of memory buffers has to be considered. Carelessly
designed, the limited buffer space can lead to deadlock situations and stall the entire sys-
tem. The following section introduces additional constraints to microslices to prevent such
situations.

Maximum microslice data size

In order to lower the transaction frequency, the timeslice building handles microslices
only in blocks. The current implementation uses a fixed block size of one TSC. It always
accumulates all microslices for a full TSC before sending data through the network.8

8The following arguments are also valid for any other fixed-block-size implementation.
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This facilitates a plain, easy to maintain implementation of the timeslice building with
significantly reduced complexity compared to dynamic block sizes.

One potential issue though, arises when the input interface cannot deliver more microslices
due to a lack of buffer space, yet the timeslice building will not free buffer space as it waits
for a complete TSC. To prevent this deadlock, each input buffer must be able to hold at
least one full TSC. If sMS, max is the maximum data size of a microslice and nMS is the
number of microslices per TSC the minimum buffer size B is given by

B = sMS, max · nMS .

Guaranteeing this amount of buffer space is not trivial. The maximum microslice data
size sMS, max can be rewritten as

sMS, max = tMS · rFEE, max ,

with tMS denoting the length of a microslice and rFEE, max being the maximum data rate
contributing to the microslice. In the final system, both factors may vary by several orders
of magnitude. The rate rFEE, max depends on the maximum front-end data production
rate. This rate can be many times higher than the expected data rate for a given scenario.
It may even exceed the maximum possible interface data rate as all front-end derandom-
ization buffers need to be included in the calculation. This implies that, in the worst-case,
the input buffer space has to be many times larger than what is needed for typical opera-
tion. Secondly, the microslice length tMS is used to adapt the system to different running
scenarios (cf. Sec. 4.2.3). To keep the average data size of a microslice approximately
constant, the the length of a microslice is increased for lower rates. This implies that the
worst-case buffer size rises when scaling down the system.

The chosen solution to this dilemma is to limit the worst-case buffer space by defining
a maximum microslice data size. Consequently, special considerations are required if
microslice data content exceeds this size. Fortunately, the input buffers are in any case
designed to hold several average-sized TSCs to parallelize timeslice building (cf. Sec. 4.5.2).
This means the available buffer space is already significantly larger than an expected TSC.
As a result, the maximum microslice data size can be chosen large enough to reduce the
occurrence of overfull microslices at desired operation conditions to a minimum and treat
overfull microslices as a rare error condition. In this case, it is acceptable to discard the
data content of overfull microslices in favor of a running system. Such erroneous microslices
need to be flagged accordingly to prevent incorrect analysis results. Otherwise, overfull
microslices do not add additional system complexity to the data handling as they can be
treated like any other microslice.

The microslice size limit is best enforced by the logic of the subsystem, as it is aware of
the detector data format and can apply sophisticated algorithms to decide which data
to discard in case of an overflow. This is, for example, useful in case a detector data
format adds information in the form of a footer to the end of each microslice. Because an
overflow can stall the whole FLES chain, the CRI hardware design enforces an additional
hard limit for cases in which the subsystem design fails or has not implemented a soft
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limit. The idea is to set this hard limit slightly above a user-defined soft limit. To avoid
unnecessary buffering and to allow for postmortem error analysis, only the overflow data
is discarded in hardware and the associated overflow flag in the microslice descriptor is
set. The current timeslice building does not treat overflow microslices in any special way.
For low rates, the remaining data does not impose any performance limitation. For the
highest rates, the network load may be further optimized by discarding the remaining
data content before timeslice building in software. The analysis may implement special
processing for timeslices containing truncated microslices or discard the whole timeslice.

Maximum microslice delay

Another critical parameter that affects the system health is the variance in microslice
arrival time across different inputs. Even if the data for each microslice is produced in
the same period for all inputs, the arrival time of the respective microslice may vary
from channel to channel. Under normal operating conditions, the main contributions
to the difference in arrival time are front-end and CRI derandomization buffers. The
STS, for example, has a front-end drain time, potentially resulting in a corresponding
time difference, of approximately 100 µs [43]. The input buffers equalize these differences
before timeslice building. Normally, the required buffer space for this is negligible. A
potential issue arises when a subsystem component or channel fails and starts delivering
microslices at a wrong rate or no microslices at all. In these cases, the differences will grow
infinitely until the buffer space is not sufficient anymore. Especially if the rate is too low
or even zero, a single erroneous input could stall the whole system. Such situations must
be detected, and countermeasures must be taken as early as possible.9 While in particular,
only the variance between the inputs and not the absolute delay is critical, determining
the variance is not trivial. It would require distributed measurements of the arrival time
across all inputs.

To facilitate an autonomous detection of error conditions in all stages of the readout tree,
it is beneficial to define a maximum absolute microslice arrival delay. An absolute delay
can be easily determined locally by comparing the microslice timestamp to the current
experiment time. Each stage can implement timeouts and countermeasures based on the
maximum delay. The timeslice component building, for example, can ignore microslices
arriving after a timeout to avoid stalling the system. With the delay globally defined, it
is in addition more coherent on how the system will react. Additionally, the current delay
is a valuable system health indicator that can be published to the global monitoring.

4.2.6 Generation of microslices

Detailed knowledge about the subsystem data format is needed to generate valid mi-
croslices for detector message streams. The generating logic has to keep track of the

9A potential countermeasure is to insert special error handling microslices into the data stream to ensure
subsequent stages do not stall (cf. Sec. 4.6.1).
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Figure 4.6: Structure of the 32-byte microslice descriptor.

message time information, convert it to global time, and partition the streams accord-
ingly. For this reason the generation of microslices is a subsystem-specific task and will
be part of the subsystem-specific logic of the CRI (cf. Appendix B).

The microslice generation process in the CRI hardware implies that, besides the general
synchronization, potential front-end timing offsets have to be calibrated at least at the level
of the CRI to enable the necessary conversion to global experiment time. The calibration
effort required, however, can be limited utilizing the timeslice overlap mechanism. A
resulting small, but defined uncertainty in time when assigning messages to microslices
can be hidden in the generated overlap.

4.2.7 Microslice container format

This section discusses the details of the microslice format. Each microslice consists of a
32-byte microslice descriptor and a block of experiment data. As microslices by definition
cover a constant interval of time and data production rates fluctuate, the size of the data
block varies from microslice to microslice. The size of the data block is always an integer
number of bytes. For each stream, exactly one microslice is generated per time interval.
The microslice data contents may be empty if no data is available for the corresponding
time interval.

Microslices are designed to enable subsystem-agnostic data handling. All information
needed by the data handling logic is included in the microslice descriptor. The microslice
descriptor is specially structured to provide a software friendly, self-contained description
of a microslice. It it allows for an independent interpretation of a microslice, i. e., without
knowledge of an explicit context like, e. g., the channel it was sent on. While this increases
the descriptor size slightly, it adds significant flexibility to the handling of microslices. The
explicit information eases the implementation of analysis steps and allows cross-checking
the integrity of the system. To allow for easy software access, all fields are sized to match
C/C++ built-in data types and are carefully aligned. In memory, the microslice descriptor
represents a packed data structure and can be accessed by interpreting the memory region
as a C struct. The structure of the microslice descriptor is displayed in Table 4.6. The
individual meaning of and reasoning for each microslice descriptor field is given below.

Descriptor format identifier (hdr_id) The microslice descriptor contains a hierarchy
of format identifier and version fields. Altogether, they define how to interpret the mi-
croslice descriptor itself as well as the data content. The hierarchy creates flexibility and
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separation of subsystems. The descriptor format identifier is the top level of the format
hierarchy. It specifies the actual descriptor format and, therefore, the exact meaning of
all other bits. The current value is 0xDD. This field is unique in that the bits cannot be
easily redefined without breaking backward compatibility.

Descriptor format version (hdr_ver) The descriptor format version gives the de-
scriptor revision of the microslice descriptor and defines the following fields. The value
of 0x01 corresponds to the descriptor structure, as presented here. The version must be
incremented if the descriptor format changes.

Subsystem identifier (sys_id) The subsystem identifier identifies the CBM subsystem
that has generated the microslice. Identifiers are fixed for each subsystem and defined
globally. The subsystem identifier defines the meaning of the subsystem-dependent bits
in the descriptor. Note that it does not specify the format revision of the data content.

Subsystem format version (sys_ver) The subsystem format version specifies the
format revision of the data content. Together with the sys_id, it defines the exact format
of the data content. The subsystem data formats and the corresponding format version
numbers are managed by the subsystems themselves. The value 0xFF is reserved for test
purposes and shall not be used by the subsystems.

Equipment identifier (eq_id) The equipment identifier gives the unique number of the
equipment on which the microslices are created. It thereby implements a source address
and may be used to extend the address space of the detector data format. Together with
the implicit FLES channel ID, it enables checking correct cabling.

Status and error flags (flags) The flags field holds status and error conditions that
are relevant to the data handling or of global interest. It allows reacting on relevant
conditions, e. g., a microslice overflow, early in the data path, without reading the data
itself. At the time of writing, all flags are globally defined, but it is feasible to define
subsystem-specific flags if a valid use case is presented. Each bit in the flags field signals
a specific situation. If a specified situation occurs, the corresponding bit is set to one;
otherwise, it is set to zero.

Microslice start time (time) Represents the start time of the microslice in TFC time
format with ns precision. The value of time has to be incremented by the microslice
interval length for each generated microslice during a run. To limit the time calibration
precision required at CRI level, a defined small uncertainty in time is acceptable when
assigning messages to microslices. Given the global microslice interval length T (e. g.,
10 µs) and allowable time uncertainties ∆t0,∆t1 (e. g., 100 ns), the microslice with the
time field set to s may contain experiment data exactly from the time interval

t ∈ [s−∆t0, (s+ T ) + ∆t1) . (4.4)

Reserving 64 bit for the timestamp ensures that it does not wrap10 and facilitates its usage
as experiment time, i. e., absolute time reference that never resets.
10A timestamp overflow occurs only after (264 − 1) · 10−9 s ≈ 585 a
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Checksum (crc) The checksum field holds a CRC-32C checksum of the microslice data
content. This field is optional and only valid if the CRC valid flag is set. This is necessary
as the hardware CRC module is optional.

Size (size) Gives the size of the microslice data content in bytes.

Buffer index (index) The buffer index describes the location of the microslice data
block in memory. It is part of an index table that is created by the FLIM data handling
and added to the descriptor. The index table is presented in more detail in Section 4.3.1.

4.3 FLES interface module

The stream of microslices produced by the subsystem-specific logic of the CRI must be
forwarded to the hosts main memory for further processing. This task is fulfilled by an
HDL module for the FPGA of the CRI, the FLES Interface Module (FLIM). It implements
a common on-chip interface towards the subsystem specific logic and a high-throughput
DMA engine to transfer the data to the host.

The FLIM is designed with a focus on efficient data handling. The FLES must be capable
of processing all input data in quasi-real-time to avoid throttling the experiment. The
more efficiently data can be processed, the fewer entry nodes are required. In high-
throughput applications, the available memory bandwidth can quickly become the limiting
factor. Often the number of times data is copied puts an upper limit on the achievable
throughput. One paradigm allowing efficient, high-throughput data transport designs
is, therefore, zero-copy. In practical terms, a zero-copy data flow means that the data
delivered by the FLIM must be consumable by the timeslice building software without
any additional memory copies. This requires a careful design of the memory management,
the use of DMA, and a suitable synchronization scheme.

This section presents an efficient host interface architecture that enables zero-copy time-
slice building and presents the corresponding implementation of the FLIM. The architec-
ture was developed in context of and is described in more detail in [44].

4.3.1 Host interface memory model

The FLIM asynchronously receives microslices and has to forward them to the main mem-
ory of the host via DMA. The timeslice building continuously consumes microslices from
the main memory. This forms a classical producer–consumer pattern. A memory man-
agement scheme that defines how producer and consumer exchange data is required. To
facilitate a zero-copy data flow, the memory scheme must take into account the needs of
the timeslice building process. The scheme must take into account the following aspects:
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• The data model foresees microslices as the smallest entity of data handling.11 The
memory scheme should provide access and synchronization on the level of individual
microslices.

• To avoid the need for large buffers on the CRI, the architecture must support the
streaming of data to the main memory immediately without the need to wait for the
entire microslice.

• Timeslice building has to combine microslices to a TSC. Processing of scattered
data can be costly and unnecessarily complicated. It is most efficient if subsequent
microslices are arranged in a dense, continuous block.

• Registering DMA buffers with the operating system is costly, so the scheme should
support reusing existing DMA buffer space.

• The previous point results in a static input buffer. Memory assigned to these buffers
is not available for other tasks. For efficient memory usage, the scheme should avoid
memory fragmentation.

To avoid CPU copies, the appropriate placement of the necessary data objects in memory
has to be performed directly by the DMA transfers initiated by the FLIM. Coordinating
these transfers is a key point of the design. Because microslices have a variable size, it is not
possible to issue fixed-size DMA transfer requests without creating memory fragmentation.
Involving the device driver to calculate each transfer request ad hoc is inefficient and would
require large buffers on the device to bridge the delay. Therefore, the buffer management
has to run mostly in hardware, i. e., is part of the FPGA design.

Dual ring buffer memory scheme

The presented challenges can be solved by a memory scheme using two ring buffers. Fig-
ure 4.7 gives a schematic overview of the chosen buffer structure in the main memory
of the entry node. All microslice data content is written as a continuous stream to the
data buffer. For each transferred microslice content, the FLIM creates a full microslice
descriptor by appending the size and position of the content in the data buffer to the
initial microslice descriptor created by the microslice building. The resulting descriptor is
written to the second, much smaller descriptor buffer, which has entries of fixed size. The
ring buffers scheme naturally allows the reuse of DMA buffer space and provides a simple,
lock-free synchronization mechanism via the exchange of read and write indices.12 The
memory management and write address calculation can be implemented on the FPGA
without the need to involve the device driver for single transfers. No additional complex
memory management in software is needed.
11The intended data size of a microslice and a TSC varies with the selection scenario (cf. Sec. 4.2.3). For
this discussion, microslice sizes from 1 kB to 50 kB and a TSC size of 10 MB can be assumed.

12In the following, index refers to a ring buffer index in bytes rather than in elements if not denoted
otherwise.
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Figure 4.7: Dual ring buffer memory scheme. All microslice data content is stored consec-
utively in the data buffer. The microslice descriptors are stored in a separate
descriptor buffer. The microslice content location is defined by the index and
size fields in the descriptor.

The scheme allows efficient, individual, or blockwise access to microslices. With only fixed-
size, densely-packed elements, random access to stored descriptors is possible via simple
pointer arithmetics. The corresponding data content is given by the microslice index and
size fields of the descriptor. Since the data content is stored as a contiguous stream, a
block of microslices can be accessed with information from the first and last descriptor of
the block only. Technically it would be sufficient to store only the microslice index and
size in the descriptor buffer. However, the microslice data model allows timeslice building
based on metadata stored in the microslice descriptor. The timeslice building process does
not need to access the microslice data content. Storing the full descriptor in the descriptor
buffer increases the locality of the metadata and allows fast access without dereferencing
multiple pointers.

The microslice index stored in the descriptor primarily has to point to the data content in
the data ring buffer. However, random access to microslices via the descriptor table is also
useful after moving a block of microslices to another buffer, e. g., after timeslice building.
To facilitate the reuse of the descriptor table without rewriting the indices, the microslice
index is a monotonically increasing byte index. In contrast to an offset, it does not reset
when the ring buffer wraps. From such an index, the memory address in the initial input
data buffer filled by the FLIM, as well as in any other buffer, can be calculated without
knowing the history of the data. The address offset oinitial

n of the microslice content n
within the initial data ring buffer can be calculated from the index in and buffer size s
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as:
oinitial

n = in mod s .

After moving a block of data to any other linear buffer, the new address offset of the
microslice content onew

n can be calculated from the index in by subtracting the index of
the first microslice in the block i0:

onew
n = in − i0 .

The first index is known locally. Information like the size of the original ring buffer is not
relevant.

One downside of a ring buffer scheme is that freeing buffer space is strictly consecutive,
and a single element can block significant amounts of buffer space. However, under normal
operating conditions, the time required for timeslice building should not vary widely. Also,
the buffers will be in the order of several gigabytes, covering multiple timeslice building
blocks. For the exceptional case that a specific TSC cannot be processed, an appropriate
error handling within the timeslice building process is needed in any case.

Timeslice component building algorithm

The dual ring buffer scheme enables efficient TSC building. The two buffers separate data
from control information. The control flow only needs information from the descriptor
buffer. A TSC building example is depicted in Figure 4.8. The algorithm13 starts by
reading the first and last associated microslice descriptors and calculating the start and
end address of the data block. Next, the addresses are compared to check if the ring
buffer wraps within the data segment. Data is available in one or two contiguous blocks,
depending on whether the buffer wrapped. The same applies to the descriptor buffer. Thus
a TSC can be described by a gather list with two to four entries, independent from the
number of microslices it contains: One entry for the data block and one for the descriptor
block if none of the buffers wrapped. Three entries if one of the buffers wrapped and four
entries in the case both buffers wrapped. The gather list can be passed to the timeslice
building sender to transfer the segments to the corresponding processing node.

4.3.2 Microslice interface

The subsystem logic of the detector partitions the detector message stream and creates
microslices. In consequence, the interface between the subsystem logic and FLIM is de-
signed to handle data on the microslice level. It is referred to as the microslice interface.
The following section gives an overview of the FLIM microslice interface, with a focus on
design decisions and logical aspects. A detailed interface definition, including all signals,
can be found in [45].
13This simple algorithm implies that the buffer can hold at least one full TSC, which can be guaranteed
by limiting the data size of a microslice (cf. Sec. 4.2.5).
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Figure 4.8: Timeslice component building with dual ring buffers. Independent of the num-
ber of microslices, each TSC can be described as a gather list with a maximum
of four entries. In the example above, TSC1 consists of two contiguous blocks
(one descriptor plus one data block). For TSC2, the data buffer wrapped, re-
sulting in three blocks (one descriptor plus two data blocks). A warp in both
buffers within one TSC would result in four blocks. Minimal memory access
is needed. Only the descriptors marked in gray are read to create the gather
lists.

The microslice interface can be divided into three sections: a status interface signaling
some FLES system status, a configuration interface for setting the detector subsystem
configuration, and the main data interface for receiving microslice data. The data interface
must provide a method to associate a data set with a specific microslice. This is ensured by
using a streaming interface with packet support. Each microslice data set is represented by
exactly one packet. The interface implementation is derived from the AXI4-Stream [46]
specification to follow a well-known interface definition. The subsystem logic streams
microslice data along with a set of meta-information, e. g., the start time, to the FLIM.
It does not create FLES specific data structures like the microslice descriptor. Such data
structures are created internally in the FLIM module from the given metadata. This saves
additional data multiplexers in the user design and provides an abstraction to change the
underlying communication with the FLES.

For efficient resource usage of the FPGA of the CRI, it is essential to avoid the need for
extensive data buffering. The microslice interface design facilitates designs with minimal
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buffering needs by allowing to stream available microslice content immediately. Informa-
tion such as the data size of a microslice, which would require buffering the entire content,
does not need to be known in advance. Additionally, the subsystem logic can hold the
data transfer at any time by raising the corresponding flow control signals if no data from
the detector is available, avoiding large derandomization buffers.

A microslice can be any integer number of bytes, independent of the data word width.
A set of additional flags allows the subsystem logic to signal specific states and error
conditions on a microslice basis. The subsystem logic is expected to generate precisely
one microslice for each time interval and deliver microslices in chronological order. If no
data is available for a given interval, an empty microslice is expected. This substantially
eases the implementation of timeouts and data consistency checks in the later stages of
the FLES data path.

4.3.3 Hardware design

The FLIM functionality is implemented in an HDL module which is part of the FPGA
design of the CRI. Figure 4.9 depicts a general overview of the resulting hardware archi-
tecture. The design can be split into the following major building blocks:

• The microslice interface, handling all communication with the subsystem design.
• A DMA engine, coordinating the transfer of microslices to the host memory.
• A system bus and bus bridge, allowing configuration and status access from the host.

Communication with the host is established via a shared PCIe Interface. The FLIM is
associated with its own PCIe physical function (cf. Sec. 5.3.1). The main building blocks
are discussed in more detail in the following section.

Main data path

For most subsystems it is not feasible to merge all CRI input links into a single microslice
stream due to the resource constraints on the needed merging stage. Thus, a FLIM has
to be able to handle multiple microslice streams. The FLIM associates each input with a
fully independent DMA channel and corresponding individual buffer structure in the main
memory of the host. Consequently, the FLIM does not merge any data. The data path
handles data exclusively on the microslice level and is agnostic to the microslice content.

As Figure 4.9 shows, the main data path is split into individual channel sections, which
operate in parallel. Each channel consists of a microslice interface module that handles
the data protocol and a DMA channel engine creating the needed memory write request
TLPs.

To support high-throughput as well as high-connectivity setups with the same design, the
available PCIe bandwidth is dynamically shared between all channels. A multiplexer joins
the TLP streams from the individual DMA channels. Any stream can be operated at
full bandwidth without changes to the hardware design or configuration, as long as the
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Figure 4.9: Building blocks of the FLIM hardware design. Each input is associated with
a separate microslice processing module and channel of the DMA engine. All
channels dynamically share the PCIe bandwidth. The bus bridge memory
maps the system control bus to a PCIe BAR for configuration access.

aggregate input data rate does not exceed the PCIe bandwidth. This results in a very
flexible architecture that has no interlink dependencies besides shared PCIe bandwidth.

Configuration bus

The host must be able to configure and control the FLIM hardware modules, e. g., the
DMA engine. Additionally, access to status information is essential for system control.

The FLIM design utilizes an in-system bus to implement a flexible and resource-efficient
configuration infrastructure. Each building block is equipped with a separate register
file storing the configuration and status information. All register files are connected to
a central system bus. Crossings between the different clock domains of the design are
implemented on the bus level. In this case, signal synchronization is needed only for the
bus signals instead of for each register. The architecture additionally relaxes the timing
requirements as the configuration registers can be placed close to the attached logic. The
timing of the bus can be relaxed by adding register stages, each of which is limited to the
width of the bus.

The configuration bus of the FLIM is fully separated from the configuration of the subsys-
tem. It utilizes a separate bus bridge module receiving and sending only TLPs associated
with the PCIe function of the FLIM. The full system bus address space is bridged to a
PCIe BAR, therefore making it available for direct memory-mapped access via the device
driver. No additional communication protocol is used. The bridge receives request TLPs
from the integrated PCIe core and creates the matching system bus operations. For read
requests, a completion TLP is generated and delivered back to the core.
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Figure 4.10: Address spaces and possible mappings in the memory subsystem of a mod-
ern Linux system. IOMMUs and host bridges can create mappings between
physical and bus addresses, e. g., mapping scattered physical pages to a con-
tiguous block of bus addresses. Figure adapted from [47].

4.3.4 DMA implementation

The following section presents the hardware implementation of the DMA host interface
that is required for each DMA channel.

Handling of large DMA buffers

Due to the page-based virtual memory subsystem, a buffer that appears continuous to
an application is, in general, not continuous from the view of a PCIe device. Figure 4.10
gives a schematic overview of the address spaces found in a Linux system. A PCIe card
operates on the bus address space. In older systems, the bus addresses space is identical
to the CPU physical address space. However, in general, PCIe host bridges and IOMMUs
can produce additional, arbitrary mappings between bus and physical address.

The memory management in modern Linux systems does not support the allocation of
large contiguous buffers in physical address space. In case of a direct mapping between
physical and bus address space, the PCIe device sees fragmented buffers. DMA designs
classically deal with this situation by performing vectored IO. The target buffer is described
by a list of memory descriptors, a scatter/gather list. To transfer data to or from a
fragmented memory region, the DMA engine uses the scatter/gather list to create the
corresponding requests. Allocating memory in user space gives very little control with
respect to how that memory is organized in the physical address space. Tests show that
buffers are fragmented on page level. With regular 4 kB pages and large buffers, this
can lead to long scatter lists. Such a list can have tens of megabytes and cannot be
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Figure 4.11: Schematic of the DMA engine. A central packetizer FSM implements the
dual buffer and indexing logic and creates write request TLPs. Each ring
buffer is managed by a separate buffer manager that feeds DMA descriptors
with write address and length to the packetizer. A TLP is created either if
data to fill the full payload is available, or if a microslice needs to be finalized.

stored efficiently in the FPGA. With large scatter/gather lists, a continuous list exchange
mechanism between device and host would be required. Instead, the FLIM DMA design
exploits the IOMMU feature found in all modern x86-64 CPUs. The IOMMU maps blocks
scattered in physical address space to one or very few contiguous blocks in the bus address
space. The resulting buffer descriptor can be easily stored in the FPGA. This limits the
design complexity, as it obviates having a list update mechanism and leaves more bus
bandwidth for data transfers. Tests at the full FLIM rate have not shown a measurable
performance impact of the IOMMU on the PCIe throughput. An additional benefit of
employing the IOMMU is the memory protection it can provide. With configured IOMMU,
a device can only access its assigned address space. This increases system stability in the
case of malfunctioning devices.

DMA channel logic

The FLIM hardware design implements the dual ring buffer DMA scheme. Figure 4.11
shows a schematic overview of a single DMA channel. The central element is a packetizer
FSM, which creates PCIe write request TLPs from the input data. The packetizer imple-
ments the dual buffer and indexing logic. The payload capacity of a TLP is much smaller
than the average microslice size.14 For an incoming microslice, the packetizer continuously
creates write TLPs until the full content is written to the data buffer. Subsequently, it
extends the microslice descriptor with the microslice index and creates a single write TLP
for the descriptor buffer. For empty microslices, only a descriptor write is performed.
14The maximum payload size of a PCIe TLP is 4096 B. The host system can further limit the size.
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The packetizer has to know to which addresses the TLPs should be written. To keep the
design flexible, the packetizer implementation is independent of the buffer management
and address calculation. Instead, both buffers are managed by separate buffer managers.
They store the read and write indices as well as the scatter lists. The buffer managers
perform all address calculations and supply the packetizer with a DMA descriptor of bus
address and length for each package. If any of the buffers is full, the respective manager
does not supply a descriptor until enough space is available. To eliminate the need for time-
critical communication with the host, the current implementation of the buffer manager
stores the full scatter list in the FPGA. The device driver simply needs to update the read
index to free buffer space, which is usually not time-critical. Care needs to be taken not
to issue memory operations forbidden by the PCIe standard, such as transfers crossing a
page boundary or exceeding the supported maximum payload size of the host machine. To
reduce the complexity of packaging and address calculation, the buffer managers work with
configurable TLP payload sizes. The TLP payload size for descriptor writes is determined
by the fixed descriptor size. Microslices, however, can be of any number of bytes. For the
last data TLP of a microslice, the packetizer pads the payload to the static packet size.

Synchronization scheme

The DMA transfers to the host memory are performed autonomously without involving
the host CPU. Thus, in addition to the transfers, a synchronization mechanism between
the DMA engine and user application is needed. Vice versa, the DMA engine needs to be
notified if parts of the buffer can be reused.

Device-to-host synchronization In general, synchronization from device to host can be
realized with interrupts or with polling. In the case of interrupts, the PCIe card sends an
interrupt to the host to announce that new data, e. g., a microslice, is available. This will
cause the operating system to call the registered interrupt handler, which in turn triggers
the next steps to handle the data. The advantage of the interrupt method is that the
system is only notified if new data is available, and the CPU is otherwise free for other
tasks. The disadvantage is the comparatively high cost of handling the interrupt, which
includes a context switch to kernel mode. This can become a performance issue, especially
for high-rate applications like the FLES. Consequently, most devices utilize polling mode
under high load [48]. In polling mode, the application periodically monitors if new data is
available. While this uses additional CPU resources when no data is available, it is more
efficient in a high-load scenario. In the FLIM scenario, the defined microslice frequency and
relaxed latency constraints allow reducing the polling frequency to a minimum. The FLIM,
therefore, implements only a polling mode, as an additional interrupt mode increases
complexity without promising benefits in a high-rate scenario.

Polling relies on monitoring suitable information provided by the DMA engine. Ideally, this
information is present in the main memory to minimize read transactions via the PCIe bus.
For a ring buffer scheme, one choice would be to write the write index to the main memory.
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Figure 4.12: Non-blocking synchronization scheme between the FLIM DMA engine and a
consumer application. For better clarity, only a single ring buffer is shown.
Each ring buffer is associated with two indices. After writing data to the main
memory, the DMA engine updates its write index. The consumer application
asynchronously polls the write index to determine if new data is available
and updates its read index when data is processed. To release buffer space, it
updates the read index on the device. The FLIM hardware design implements
atomic access to the shared indices stored on the device to prevent potential
race conditions.

However, PCIe write operations are in general not atomic.15 The PCIe specification only
requires that updates to a memory address are observable in increasing address order.
The granularity of these updates is not defined and depends on the implementation of
the host system (cf. [49, Sec. 2.4.3]). This means that the CPU might observe the first
part of a word updated while the other part contains an old value, e. g., when reading
64 bit from the main memory. A safe polling mechanism requires the implementation of
an additional mutex or handshake mechanism. Additional complexity and operations from
such a mechanism reduce the advantages of polling a location in the main memory. To
guarantee atomic access to the read index, the FLIM design implements the polling via
PIO reads to a memory location on the PCIe device. In this case, the FLIM hardware
design determines the update granularity and can ensure that a valid index is returned.

To increase the throughput, the data path includes multiple derandomization buffers be-
tween the DMA channel logic creating the write request TLPs, and the actual PCIe inter-
face. Multiplexing of the TLPs from the DMA engine and read completion TLPs from the
bus bridge occurs after these buffers (see Fig. 4.9). Consequently, the write index managed
by a DMA channel cannot be used for synchronization as the PIO read completion for the
index can pass a buffered DMA write request. A second descriptor write index is managed
15Newer PCIe standards specify atomic operations, which could help. Because they were not widely
supported at the time of development, this option was not further investigated.
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to overcome this limitation without restricting flexibility in buffer design. A counter keeps
track of the descriptor writes requests passed to the PCIe interface after buffering. From
that point in the data path, strict PCIe ordering guarantees the PIO read completion will
not pass the DMA descriptor write request.

Write index polling is only needed for the descriptor buffer. The data buffer requires no
explicit device to host synchronization. Because the descriptor is always written after the
data content, the state of the data buffer can be safely derived from the index and size
information provided by the descriptors.

Host-to-device synchronization After the user application consumed the microslices,
the memory sections have to be freed for new DMA transfers. This host-to-device syn-
chronization is less complex as the user application can synchronously trigger it. The
device driver updates the read index managed by the DMA channel for each buffer via
PIO. As for the write index, the hardware implementation guarantees the proper modify
granularity. Working with read indices implies that there is no need to acknowledge single
microslices. The user application can group operations and free larger blocks, e. g., one
or multiple TSCs with a single update. This drastically reduces the interaction frequency
between the user application and the device.

4.3.5 Hardware monitoring system

The FLIMs are part of a large, distributed system, in which a single component may slow
down or stall the entire system. In such a system, it is a challenging task to determine
the overall system state and identify potential bottlenecks or overload situations. Precise
information from all individual components is needed to assemble a full picture.

The FLIM hardware design, therefore, incorporates sophisticated hardware monitoring
features. The design continuously collects status and error information as well as perfor-
mance statistics for several key areas of the data flow, e. g., the microslice interface, the
individual DMA channels, and the shared PCIe engine. For these points measurements
like momentary data throughput, buffer fill states and generated back pressure are per-
formed. For each DMA channel, statistics on the three possible sources of back pressure,
as well as the microslice processing rate, are collected. A channel can stall either because
one of the two target buffers is full or because the shared PCIe interface is busy, e. g.,
handling data from another channel. Collecting statistics on the data path has proven to
be a valuable tool for monitoring the system state in real-time. Notably, the information
on the various sources of back pressure helps to identify bottlenecks and misconfiguration
quickly. For example, high back pressure from only the descriptor buffer directly hints to
an insufficient size of the descriptor buffer for the given running scenario.

All measurements and status information are retrieved from the hardware via the FLIM
device driver. An accompanying application publishes this information to the prototype
of the central FLES monitoring system. It periodically collects metrics from all FLIMs
in a node and sinks it to a central Influx time-series database. Status and history can be

64



4.3 FLES interface module

DMA Channel

Channel
Device

Register File

PCI Bar

PDA Device

DMA 
Buffer

Figure 4.13: Overview of the FLIM device library. The classes give access to the con-
figuration options of the corresponding hardware building blocks. The PDA
user-space library (dashed) contributes the fundamental, generic components.

retrieved using a Grafana web application. Alternatively, the information can be presented
on the local console. The monitoring information is a crucial component of all existing
readout setups and is heavily used by the detector subsystems to monitor their status and
data rates.

4.3.6 Device driver and library

In order to use the PCIe device of the FLIM and allow interaction with an application, a
device driver is needed. The objective of the device driver is to provide a generic interface
to the user application and to abstract from hardware implementation details.

The FLIM device driver is based on the PDA micro driver framework [50]. The PDA
implements a minimal, generic kernel module and an accompanying user-space communi-
cation layer. The kernel module handles only the necessary kernel-space functions such
as binding the PCIe device or interfacing the DMA API of the kernel [47]. The accom-
panying user-space library provides an API for generic device discovery, memory-mapped
access to the address spaces of the device, and registering DMA buffers. All device-specific
functions and the user interfaces are implemented in the custom-developed device library
libcri.

Figure 4.13 gives a schematic overview of the device driver and software stack. Marked
in white is the libcri, while the underlying PDA components are marked in gray. The
libcri is fully object-oriented and written in C++. A lightweight C++ wrapper interfaces
the PDA user-space library that is implemented in C. The structure of the library reflects
the logical structure of the FPGA design. The classes represent building blocks and their
configuration options. Building blocks can be easily added or exchanged with different
implementations without influencing other blocks. The device class handles all device-
global functions and serves as a factory for the channel class. Each instance of channel
represents one FLIM channel. For a channel, the user application can instantiate a DMA
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channel to set up DMA transfers. All classes use the underlying register file class to gain
access to the individual register files.

Configuration and status access

One issue a device driver implementation has to solve is consistent access to status and
configuration registers in the device address space. The FLIM hardware design maps the
address space of the internal system bus via a PCIe BAR to the physical address space
of the host system. Access from software is then granted by memory-mapping the BAR
address space. However, the internal layout of this address space, e. g., the addresses and
functions of specific registers, is determined by the FPGA design. Hard coding addresses
into the driver, or even the user software is inflexible and prone to errors if the address
layout changes. For more flexibility, the automated FLIM hardware design build flow
generates a map of register address constants. The map is not flat but separated in local
register addresses and base offsets of the individual register files. The separation allows
modeling repeating register files, e. g., those of the individual channels, without duplication
of code. Each hardware register file is represented by an instance of the register file class
implementing the offsets of the individual register files. With this, reading and writing
registers does not require explicit address calculation for every access, and therefore, is
less prone to errors.

Except for debug purposes the raw register access is not exposed through the user API of
libcri. Instead, higher-level functions are provided by the individual modules. These are
modeled after the functionality a given module provides and wrap the required register
accesses internally. This guarantees the abstraction and separation needed in a project of
this scale and allows to change or extend specific implementations later on.

Shareable DMA buffers

One task of the device driver is to prepare the DMA buffers and configure the DMA engine
of the device. For a zero-copy data flow, it is necessary to share the FLIM DMA buffer
with other DMA devices, e. g., an InfiniBand HCA. The driver has to support this feature.
The FLIM device driver uses user-space allocated buffers to facilitate DMA buffer sharing
independently of the architecture of the device driver of the other device. Memory is
allocated in user space and passed to the device driver. The driver maps the pages to the
bus address space of the device and prepares them for DMA but does not allocate the
memory itself. This circumvents problems due to buffer ownership and allows to pass the
same buffer to multiple drivers for registration with the device.

A consequence of the user-space allocation is that the buffer is usually heavily fragmented
in the physical address space. In a setup with direct mapping of bus addresses to physical
addresses, this would lead to long, inefficient scatter lists. This situation is resolved by
employing the IOMMU of the host system to map the scattered physical memory to
a continuous segment in bus address space. In order to set up a DMA channel, the
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user application passes two buffers to the device driver. The kernel module registers the
buffer with the DMA API of the kernel and returns a bus address space scatter list. The
registration step pins the memory pages and configures the IOMMU. The user-space device
library uses the scatter list, which is now very short,16 to configure the DMA engine of
the FLIM.

4.3.7 Data publishing server

Integration of the FLIM into the general FLES data transport framework as a data source
requires a performant application interface that is capable of transporting the full input
data stream without requiring extensive processing resources or creating additional over-
head. With the goal of zero-copy timeslice building in mind, the transport framework
needs direct access to the DMA buffers filled by the FLIM and a possibility to register
them for RDMA. Furthermore, there are potentially multiple consumers that need to ac-
cess data of the same FLIM channel: Apart from timeslice building, the input interface
design also has to facilitate node-local analyses, e. g., channel-local QA processes. The
application interface must therefore provide efficient access to the data without copying,
a multi-consumer synchronization mechanism, and a method to share the DMA buffers
with multiple devices.

A combination of a publishing agent and a shared-memory-based inter-process interface
allows meeting these aforementioned demands. A publisher agent, called CRI server, han-
dles all device-specific features like configuration and has ownership of the DMA buffers.
It is the only process that interfaces the device driver to communicate with the PCIe
device. Data is published and accessible via a POSIX shared memory, which contains the
synchronization structures, i. e., read and write indices, as well as the actual DMA buffers.
Each CRI server process handles one CRI PCIe interface with all its channels. This seg-
mentation allows efficient management of device-global resources, yet still provides full
isolation between different channels.

The consumer applications access data via a generic, dual ring buffer interface that gives
access to the data and descriptor buffer as well as the corresponding read and write
indices (cf. Sec. 4.3.1). This low-level interface does not predefine any access patterns to
the data and descriptor segments and thus does not limit the implementation options of
the timeslice building algorithm. For more convenient access to single microslices, e. g., for
QA, a high-level interface wrapper has been developed. For each active FLIM channel, the
shared memory holds a dual ring buffer structure, i. e., a data and descriptor buffer pair,
and corresponding read/write indices. To avoid copies, the buffer segments are written
directly from the FLIM via DMA. The indices, however, are managed by the server process
to provide a proper abstraction from the hardware implementation and enable multiple
consumers for a single channel.17

16Usually, it contains only one entry.
17See Section 4.3.4 for more information on the hardware/software synchronization scheme.
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Multiple consumers per channel can be supported by managing a separate read index per
consumer. In this case, the CRI server writes only the least advanced read index to the
device. Multiple consumers per channel increase the write index polling rate. The indices
are cached in the shared memory to reduce the load on the PCIe interface in such cases.
To be able to enforce a minimum polling frequency, the hardware write index is provided
with a timestamp. The consumer application can define the maximum age of the write
index during a request. Older indices are automatically updated from the device. The
CRI data publishing allows for efficient data handling by providing direct data access and
separating control information from the main data flow.

4.3.8 Evaluation

A key measure of the FLIM performance is the achievable data throughput from the
microslice input to the main memory. It depends not only on the FLIM hardware design
but also on the interplay with the software components and the host system. Measuring
the throughput in a real system allows analyzing the performance with all influencing
factors.

Figure 4.14 shows the results of a throughput measurement as a function of the microslice
lengths with a prototype hardware design on a HTG-K7 PCIe card. The HTG-K7 is based
on a Xilinx Kintex-7 FPGA and provides a x8 PCIe 2.1 interface. The host system has
been equipped with an Intel Xeon E3-1220 and 16 GB 1333 MHz DDR3 memory. Data
sources are internal microslice pattern generators set to a maximum output of 1 GB/s.
The data rate limit includes a 24-byte microslice descriptor that is part of the protocol.
The DMA engine is configured for a packet size of 128 B. Data is consumed by a simple
consumer process, which calculates the data rates and discards the data immediately.

To emulate the final system realistically the microslice pattern generators generate mi-
croslices at a fixed frequency. In consequence, the microslice data size will depend on
back pressure. The resulting measurement determines the achievable throughput for a
given microslice length. In the context of the FLES application, this is more relevant
than throughput versus packet size. For a better orientation, the upper abscissa shows
the maximum microslice data size, which is derived from the microslice length and the
maximum data rate of the pattern generator. It should be noted that this is only the
upper limit and not necessarily the actual data size of the microslice.

For a precise analysis, the throughput for different components of the data stream is
measured individually. The dashed lines show the achieved throughput of pure microslice
data content and thus give the possible payload throughput for a given microslice length.
The solid lines show the total data rate over the PCIe interface. In addition to the
microslice data payload, this includes the microslice descriptors and the overhead from
the DMA package padding. This number represents the load on the PCIe interface. The
upper line shows the theoretical PCIe limit for 128-byte packages and 64-bit address
cycles. The shown range of microslice length is chosen to include exceptionally short
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Figure 4.14: FLIM DMA throughput measured with microslice pattern generators for dif-
ferent microslice lengths and numbers of active channels. The upper abscissa
shows the maximum data size, which is derived from the length and maxi-
mum pattern generator data rate of 1 GB/s. For each setting the total data
throughput over the PCIe interface, as well as the microslice payload data
rate, are shown.

and long microslices in order to determine the impact of such extremes on the FLIM
architecture.18

Up to two active channels, the total data rate is less than the limit of the PCIe interface.
The payload throughput is determined by the rate delivered by the pattern generator.
The slight drop in payload rate for exceptionally short microslices is caused by the higher
fraction of link protocol descriptors compared to longer microslices, which are included
in the rate limit of the pattern generator but are not accounted for as payload. The
PCIe bandwidth used is considerably higher than the payload throughput for short mi-
croslices. This overhead is caused by the additional descriptors and the DMA padding
inefficiency.19 The irregularity of the overhead curve is due to the measured sizes hav-
ing different padding efficiencies. The overhead vanishes for larger microslice lengths, as
expected from Figure 4.5.

For three channels, the total bandwidth needed for very small lengths exceeds the PCIe
18The expected microslice length for full timeslice building is roughly between 10 µs to 50 µs (cf. Sec. 4.2.4).
19If necessary, the efficiency for short microslices can be optimized by reducing the DMA packet size at
the cost of maximum throughput for longer microslices.
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limit. Due to the resulting back pressure, microslices contain fewer data. As a consequence,
the achievable payload throughput drops significantly in this region. The total throughput
is the highest of all measurements. For lengths above approximately 1 µs, the PCIe bus is
no longer the limiting factor, and the payload curve sets to resemble more and more the
behavior of the data source.

For four channels, the accumulated pattern generator rate limit of 4 GB/s exceeds the
available PCIe bandwidth, and the total throughput resembles the bandwidth of the PCIe
interface for all lengths. The drop in PCIe efficiency for small length compared to three
channels is caused by the one-third increase in the package frequency that the interface
has to handle. The achievable payload throughput for small microslice lengths is further
reduced compared to three channels and approaches the PCIe limit for larger lengths. For
the microslice target region between 10 and 50 µs, the payload throughput is already above
99 % of the measured PCIe limit.

The achieved throughput can be compared to the theoretical PCIe bandwidth. The the-
oretical limit of the PCIe interface depends on the protocol overhead from TLP headers.
For 128-byte packages and 64-bit addresses, the absolute maximum theoretical limit calcu-
lates to 3556 Mbit/s. It must be expected that fluctuations in the host system, e. g., from
housekeeping tasks or buffers shared with other devices, further reduce this figure. The
measured maximum FLIM PCIe throughput is 3345 MB/s. This calculates to 94 % of the
theoretical limit after protocol overhead and 86 % before protocol overhead. An analysis
via in-system monitoring shows that the FLIM DMA engine uses nearly all available PCIe
cycles to send data. The transmission rate is, therefore, limited solely by back pressure
from the host system.

Similar measurements with a focus on scaling to more sources have been performed with
the CRI1 board (cf. 5.2.2) and a prototype hardware design. The test system used is
equipped with two Intel Xeon E5-2650 v4 CPUs and 128 GB of 2400 MHz DDR4 main
memory. The host supports up to eight x16 Generation-3 PCIe extension cards, two of
which each share a PCIe switch on the mainboard. For the tests three CRI1 cards were
installed, each connected to a separate PCIe switch. One CRI1 was connected to NUMA
node 0 (bus address 0x:00.1), while the other two cards were connected to NUMA node 1.
Each CRI1 features two PCIe endpoints combined by an additional on-board PCIe switch
and is enumerated as two PCIe devices.

Figure 4.15 shows the achievable payload throughput for different numbers of active PCIe
endpoints. The measurement was performed at a microslice size of 100 µs, a DMA package
size of 256 B, and 6 microslice streams per endpoint. To mimic a realistic scenario, the
DMA buffers are distributed equally across both NUMA domains. The first CRI1 in each
domain only uses memory on the local NUMA node. The memory for the second card in
domain 1 is interleaved across both NUMA nodes, requiring a certain amount of inter-CPU
communication.

The measurement shows a very good scaling of the throughput with the number of devices.
A single device reaches up to 7.06 GB/s, which equates to 95 % of the theoretical maximum
at the given package size. Throughput per CRI1 decreases slightly to around 6.65 GB/s
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Figure 4.15: Measured payload throughput for multiple CRI1s in one host. Each CRI1
features two PCIe devices. The total throughput scales nearly perfectly with
the number of devices and CRIs.

when both endpoints of one card are used simultaneously. This effect is not present if
multiple endpoints from different CRIs are used, leading to the conclusion that it is a
limitation of the CRI1’s PCIe switch. The total measured throughput reaches 40.2 GB/s
with a fair distribution across all devices. The measurements show that it is possible
to operate a host with 3 CRI1s in a realistic scenario without significant performance
decrease. It can be expected that a more modern host system with support for PCIe
Generation 4 or 5 will provide similar or better performance.

4.4 Timeslice building

In the CBM experiment, detector raw data consists of a continuous stream of detector
messages with no immediate association to a collision event. To efficiently manage these
raw data, it is first packaged into Microslices (see Sec. 4.2.1), each representing data from a
specific short amount of time and a specific part of a detector. The microslices for a certain
time interval are then combined over all detector parts in a single node. This timeslice
building replaces the traditional step of event building in a triggered experiment.

As several important event selection scenarios in CBM require an analysis of the full event,
this timeslice building has to be performed at the full data rate generated by the detectors.
To implement overlapping timeslices (see Sec. 4.1.1), it should in addition be possible to
duplicate a configurable number of microslices at the timeslice borders, thus generating
timeslices that can be analyzed independently without any loss of efficiency. Designed for
an incoming data rate exceeding 1 TB/s, timeslice building is a challenge even for today’s
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computer architectures. The implementation has to be carefully optimized for memory
bandwidth usage and network load to reach an economically feasible solution.

In this section, critical aspects of a suitable software design are discussed. It also in-
cludes the presentation of the results of a software implementation, which addresses these
challenges.

4.4.1 Timeslice building implementation

Memory performance Limited memory bandwidth is one of the most important bottle-
necks in today’s computers, and memory interface speed continues to increase slower than
CPU core performance or density. The general method of mitigating this situation is the
use of caches. However, in the case of timeslice building, the required data buffer sizes are
too large to fit in a cache. To achieve good use of the available resources, it is therefore
crucial to minimize memory access in the respective software.

Optimizing memory performance in the timeslice building application involves two aspects:
First, whenever possible, DMA should be used to perform memory accesses bypassing the
CPU. Second, whenever possible, data should be passed between different processes on a
machine via a shared memory region. The first aspect is already implemented on the input
side by the FLIM, which independently stores the data in the memory of the computer
via DMA (see Sec. 4.3). For the subsequent transfer via the network, an RDMA-capable
network allows direct transfer from the memory of a source computer to the memory of
a target computer mostly without the intervention of the CPU at maximum efficiency.
Computationally expensive transfer protocols such as TCP/IP are thereby avoided.

RDMA-enabled network RDMA-enabled networking technology has a favorable archi-
tecture that allows for efficient data transfer using remote DMA (RDMA) semantics. Data
is directly transferred from and into buffers managed by the user application. Using an
optimized buffer structure, no memory bandwidth has to be wasted for dispensable copy
operations.

InfiniBand, which supports RDMA as a core feature, is currently the leading networking
technology at the fastest HPC clusters in the world. In the TOP500 list of June 202220,
of the top 100 clusters, 79 were using InfiniBand. Especially for use in heterogenic in-
stallations, alternative network standards exist, such as RoCE, which combines RDMA
semantics with Ethernet technology.

The CBM timeslice building implementation provides the flexibility to use any of these
RDMA-enabled networks. However, the majority of the tests have been performed using
InfiniBand technology. Most current installations feature HDR generation hardware at
200 Gbit/s.
20See https://www.top500.org/lists/top500/2022/06/
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Figure 4.16: Overview of Flesnet buffer management. Both sender and receiver maintain
sets of dual ring buffers to store data and descriptors.

Shared memory To optimize memory performance on the individual nodes, we employ
POSIX shared memory segments whenever data is to be transferred between hardware
and software components or between different software processes. Since all buffers are
located in user space, there is no need to copy data between user space and kernel space.
This consistent use of shared memory segments eliminates wasteful copy operations or even
time-consuming serialization/deserialization cycles. By using the same memory areas both
as source/destination for (R)DMA transactions and for interprocess communication, true
zero-copy operation is achieved.

The presented concepts and paradigms for high-performance timeslice building have been
implemented continuously in the Flesnet open-source data distribution software [51]. The
software is written in the C++-17 language with a limited number of external dependen-
cies.

4.4.2 Zero-copy data flow

The buffer structures used for handling detector data in Microslices are shown in Fig-
ure 4.16. Per input channel, the FLIM (see Sec. 4.3) writes to a large dual ring buffer,
consisting of a data buffer and a descriptor buffer. The data buffer holds the raw sequence
of microslice data contents, each zero-padded for best PCIe transfer efficiency, with data
volume varying according to the current detector data rates. The descriptor buffer, on
the other hand, holds exactly one constant-size descriptor per microslice and is used as
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Figure 4.17: InfiniBand Transactions during timeslice building. Data and descriptors are
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Figure 4.18: Overview of the main data path in the FLES. The CRI server and the timeslice
building applications coordinate the data flow based on metadata. The main
data transfer is performed directly via DMA by the CRI and InfiniBand HCA
hardware.

an index table to the data buffer. In this scheme, synchronization between the readout
hardware and the software processes can be reduced to an occasional update of the read
and write pointer positions.

The timeslice buffer on the target build node can follow the same dual ring buffer concept,
but now with a sequence of microslices as the variable-size data structure, and timeslice
component descriptors for indices and metadata. The InfiniBand transactions employed
for the data transfer between the entry node and the build node are depicted in Figure 4.17.
The data itself is transmitted through an InfiniBand RDMA write transaction, while the
necessary synchronization between both ends is reduced to asynchronous updates of the
read and write pointers.

It is foreseen to migrate from this basic scheme to a more dynamic memory layout for
the timeslice buffers and more tightly scheduled network transfers in the future. This will
enable additional flexibility and control, especially with varying data volumes. However,
the straightforward scheme presented here already delivers high performance and reliability
in testing (cf. Sec. 4.4.6 and 4.4.7).

Figure 4.18 summarizes the zero-copy (R)DMA data path for raw detector data from the
front-end electronics to the online analysis in software. Controlled by the CRI server,
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Figure 4.19: The timeslice object is the primary data structure at the interface to the
online reconstruction code.

the CRI FLIM writes all incoming data via DMA directly to a shared memory section.
The server application publishes the corresponding synchronization information to the
same shared memory. The timeslice building sender process on the entry node acts as the
consumer of the FLIM data. Having registered the buffer sections in the shared memory
for RDMA, it creates gather lists for TSCs based on the descriptor information and passes
the information, together with the appropriate destination address, to the InfiniBand
driver. The InfiniBand HCA transfers the data via RDMA to a memory segment on the
corresponding target build node, which is also set up as a shared memory.

As a result, the primary data flow is handled exclusively by DMA transfers without in-
volving the CPU. The consistent use of DMA, together with relying on comparably small
amounts of control information, ensures that the timeslice building works very efficiently
with respect to necessary compute resources.

4.4.3 Online software interface to timeslices

On the target nodes, the timeslice data is stored in a shared memory segment during
timeslice building, ready to be consumed by the online analysis software chain. The
primary data structure presented to the online analysis software is the timeslice object
as shown in Figure 4.19. It consists of a number of timeslice components (TSCs), each
containing the data of a single FLIM input channel. Each TSC contains a sequence of
Microslices with a configurable number of duplicated microslices at the end to allow for
a fully independent analysis of different timeslices. The data structure includes metadata
in corresponding descriptor structures at timeslice, timeslice component, and microslice
levels. The FLES timeslice API classes are designed to provide identical access methods
to both online data in the shared memory and previously stored, serialized timeslices (cf.
Fig. 4.20).
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Figure 4.21: The timeslice interface as a part of the data chain. The interface employs a
dedicated distributor for shared memory items to connect timeslice producer
and consumers.

While direct access to the timeslice data in the shared memory is highly efficient, there are
also requirements concerning the flexibility of distributing these timeslices to respective
analysis processes. This includes the demand for:

• several independent timeslice consumer processes,

• control over back pressure generation, and

• flexibility in starting and stopping consumers.

The online timeslice interface fulfills these requests. As illustrated in Figure 4.21, it
supplements the shared memory with an item distributor entity, which communicates
with timeslice producer and consumers over local ZeroMQ Inproc and IPC sockets [52].
Depending on the readout scenario the built timeslices can either be forwarded to the
online analysis running on a different server, or they can be consumed directly on the
build node. If raw timeslices need to be stored, the Timeslices Server process on the build
node can be replaced or augmented by a Timeslice Archiver process.

Decoupling the start and stop of producer and consumer processes requires careful im-
plementation and testing because of the large number of possible event sequences. This
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Policy Effect
QueueAll All item are queued and eventually

delivered; may create back pressure.
PrebufferOne Opportunistic delivery; keeps con-

sumer busy but may skip items.
Skip Always wait for the newest item, do

not queue; may skip items.

Table 4.1: Different queuing modes can accommodate a variety of consumer use cases.

solution makes it possible to independently control data transport and online analysis
(through the EDC), and also allows for potentially failing consumer processes.

The timeslice consumer API allows for several parameters to be chosen per consumer.
These parameters include an offset and stride, which specifies a controlled subsampling of
the timeslices, and a queuing policy (cf. Table 4.1). Using these parameters, a wide variety
of scenarios can be covered from dependable timeslice archiver processes, best-effort online
analysis, and highly responsive online monitoring, to full online analysis.

All consumer processes share access to the timeslice data from the same read-only shared
memory segment and only correspond with the distributor agent through short messages.
Thus, there is no need to copy any raw data in memory, which maximizes memory efficiency
and performance on the node.

4.4.4 Load management

The timeslice building system is designed to operate continuously at the full data rate
of the CBM subdetectors for maximum efficiency. During operation, however, it cannot
be ruled out under all circumstances that the available bandwidths will be exhausted at
certain points. To ensure stable and robust operation, it is necessary to plan for these
exceptional load scenarios and to handle them appropriately.

The timeslice concept is well suited for discarding data in a controlled manner and thus
throttling the data rate. Since the timeslices can be analyzed completely independently,
they can also be discarded individually without damaging the remaining data. Only
an unavoidable loss of efficiency occurs, which corresponds to the proportion of discarded
timeslices. Since the timeslices correspond to fixed time intervals, it is always immediately
apparent for which periods data are available.

In the event of a backlog caused by the online analysis software, Flesnet first fills the
memory buffers in the build nodes, which allows us to buffer over the beam profile and
smooth the data rate. We plan to use a load balancing mechanism to dynamically adjust
the load on the build nodes to compensate for major fluctuations in timeslice sizes and
online processing performances. If the backlog persists despite these measures, complete
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Figure 4.22: Data rate for timeslice building using test pattern data on two nodes in the
mCBM experiment, from run number 1350 on 2021-06-18

timeslices are discarded by not transferring the corresponding timeslice components and
releasing the respective buffer memory on the entry nodes. In the exceptional case that
the timeslice building network is overloaded, the same mechanism can be used to throttle
the data rate.

4.4.5 Downscaling options

While the main focus of the implementation is on high performance and reliability in
a large setup, scalability to small development setups is also a design goal. The high-
performance RDMA-based transport implementations using the InfiniBand Verbs API or
Libfabric are complemented by a simple ZeroMQ transport. In this mode of operation,
no RDMA-enabled network is required, but data can be transferred transparently over
various network technologies, such as Ethernet. This enables straightforward operation of
timeslice building also in small lab setups.

Similarly, the high-throughput timeslice interface is complemented by a simple ZeroMQ
publish-subscribe interface to timeslices, which eases the deployment of comparatively un-
demanding online monitoring tasks. This high downscaling capability allows the software
to be used for all data-taking operations in CBM, even during development, which helps
to establish core concepts and stable interfaces early on.

4.4.6 Demonstrator systems

Various Flesnet demonstrator systems have been built during the course of development,
and they have been and are being used in various detector beam tests as well as smaller
ongoing experiments. The most recent and extensively tested is the one at the ongoing
mCBM [29] experiment. Here, in addition to the performance of the system, aspects of
reliability, robustness, and controllability are put to the test.
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Figure 4.23: Data rate per subsystem in the mCBM experiment, example from run number
2448 on 2022-06-16

In the mCBM experiment, we have already employed a variable number of entry nodes (1–
6) and timeslice build nodes (1–4) in a productive setup. For dry runs without detectors,
pattern data can be generated artificially in the CRIs in the entry nodes. A test run
with two entry nodes (16 channels in total) and two timeslice build nodes resulted in a
total throughput of about 20 GB/s for timeslice building without further optimization (see
Fig. 4.22), proving swift operation of the data chain from CRI to timeslices.

Figure 4.23 shows as an example the data rates of the participating detectors in the June
2022 beam time for a short period. Here timeslices were built over InfiniBand RDMA,
combining online data from seven individual subdetector systems (28 input channels) in
parallel. The setup consisted of six entry nodes and three build nodes. Data was recorded
as serialized raw data objects to SSDs and HDDs. The peak data rate of 5.3 GB/s during
spills was smoothed well by buffering to an average recording rate of 2.4 GB/s.

This multi-node setup includes an early version of a central configuration and control
system for online data taking. In conclusion, it demonstrates the successful productive
operation of the timeslice-building FLES/DAQ chain of CBM.

4.4.7 Timeslice building scalability

High performance of the timeslice building process in a large system is crucial in achieving
the CBM design goals. While there is substantial experience with the performance of the
Flesnet implementation in the scope of the mCBM experiment, benchmark testing on an
existing HPC system allows us to scale this to larger systems [53].

The results presented in Figure 4.24 were measured on a subset of nodes of a system
with 2x Intel Cascade Lake Platinum 9242 (CLX-AP) CPUs with 48 cores and 384 GB
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Figure 4.24: Measured average timeslice building data rate per entry node. Gray areas
and lines denote minimum/maximum, 10/90 percentiles, and median.

RAM, using Libfabric to run Flesnet on the OmniPath network of the system [54]. Using
an allocation of 96 nodes (operating 48 as entry nodes with artificial data sources, 48
as timeslice build nodes), the measured sustained data rate per node is approximately
7.2 GB/s, with spontaneous fluctuations in the data rate per node typically below 10 %.
This corresponds to 73 % of the maximum sustained bandwidth of 9.9 GB/s reported by
Intel for uni-directional transfers per node and results in an aggregate maximum sustained
data rate of approximately 345 GB/s. This data rate is already close to the expected
maximum rate for CBM at SIS100 (cf. Sec. 3.3.3).

4.5 Cluster and network design

The FLES is split into two portions, an entry portion housed near the experiment and
a processing portion housed in the Green IT Cube. Both portions are foreseen to be
constructed as Beowulf clusters from mainly COTS components. The entry cluster is
exclusive to CBM and houses specialized custom hardware, i. e., the CRI PCIe cards to
connect to the detector systems. The design is flat without additional stages. As a high-
speed interconnect an InfiniBand fabric is foreseen. The processing portion is part of
the central FAIR IT general-purpose cluster. These resources will be shared with other
experiments. However, it is foreseen that at least some resources are exclusively assigned
to CBM during CBM beam periods to allow for sufficient control and separation to reliably
run the experiment. This section describes the FLES cluster and network design in more
detail. As the design of the processing cluster is driven by many factors besides CBM the
discussion will focus mainly on the entry cluster and CBM specific requirements.
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State-of-the-art server technology At the time of writing a modern server CPU can
provide 64 cores and 128 PCIe generation 4 lanes. The next CPU generation is expected to
shift to PCIe Gen5 doubling the available bandwidth. For interconnect InfiniBand HDR
technology provides 200 Gbit/s links. A typical HDR HCA has a PCIe Gen4 x16 host
interface and fits into a half-height half-length (HHHL) PCIe slot. The next InfiniBand
generation, labeled NDR, doubles the bandwidth and will provide 400 Gbit/s links. To
be able to saturate these links a PCIe Gen5 x16 host interface is required. The same
numbers apply to suitable Ethernet equipment. The following discussions are mainly
based on existing hardware. It should be noted that the concept is not limited to these
technologies. It is foreseen to use the most recently available technology for the final design
if it is more cost-efficient.

4.5.1 Cluster size and scaling

The FLES has to support the wide range of the CBM running scenarios. Additionally, the
design has to support the commissioning of the experiment. Purchasing compute resources
as late as possible is due to the steady advances in technology usually most cost-efficient.
This raises the question of how to size and scale the needed resources. It is planned to
construct the entry cluster in two steps. An early commissioning-focused setup and the
final SIS100 setup.

In an early, commissioning-focused setup connectivity can be assumed as the limiting
factor. The FLES must be able to connect all detector systems. However, the data rates
of the systems and needed processing resources should be comparably low. In a scenario
with local timeslice building (cf. Sec. 4.5.4), the processing cluster can be scaled freely as
it houses no specialized hardware and there are no stringent requirements on the network.
The entry cluster needs to be able to house all CRI cards. The customs hardware, i. e.,
detector electronics, and CRI card must be decided much earlier than COTS hardware to
allow for development and production. It therefore can be assumed the CRI card will be
equipped with a PCIe gen3 x16 interface or similar. With a modern server, it is feasible
to operate up to ten PCIe cards in a single, dual-CPU node. In a connectivity-focused
setup the output bandwidth of an entry node can be designed with a high blocking factor,
thus it is sufficient to operate a single HCA per node. This leaves place for eight CRIs
per entry node. Assuming the setup will consist of approximately 200 CRI boards (cf.
Sec. 5.2.4), an absolute minimum number of 25 entry nodes are needed. However, this
does not take into account separation of subsystems. It should be noted that, depending
on the available systems at purchase, it may be more cost-efficient to operate more nodes
with fewer PCIe requirements. This will be a decided upon purchase.

For the CBM SIS100 setups, the limiting factor is network throughput and computational
power. The entry stage must be able to cope with the full output data rate of the detectors.
As the entry nodes must be compatible with the custom CRI hardware and require more
stringent tests and adaptions it is not foreseen to upgrade the cluster stepwise with given
running scenarios but support the most demanding case from the beginning. This is
reasonable as the majority in value of the equipment is in processing nodes.
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The number of entry nodes is determined by the maximum throughput and buffer capa-
bility a node can provide. Considering the substantially different data rates per CRI of
different subsystems it is feasible to balance the per node date rate by equipping nodes of
different subsystems with a different number of CRIs. Additionally for subsystems with
highly unbalanced data rates between CRIs, entry nodes can be balanced with low and
high occupancy CRIs. To minimize interference between systems it is not foreseen to mix
CRIs from different subsystems in a single node.

The computational power provided by the processing nodes can be scaled easily by adding
more nodes. This can be done more freely than adding additional entry nodes as it
requires no hardware modifications. More nodes will also increase the network capacity in
the processing portion. Timeslices can be distributed across these additional nodes. The
amount of computational power needed is subject to the second part of the document and
will be discussed there.

4.5.2 Timeslice building buffer size

To perform timeslice building, both entry and processing nodes require buffers to store
the data temporarily. The following section shows that the lower limit on buffers needed
depends directly on the size of the timeslices and the available network bandwidth. The
derivation for the presented equation can be found in [44]. In the real system, additional
buffer capacity is required, for example, to compensate for unavoidable fluctuations in
transfer and processing times which are not part of the discussion here.

Dimensioning of the entry node buffers

First, the required buffer size for the entry nodes is studied. Considering the data flows
in the overall system, data rates must naturally adhere to

Rtot ≤ Ktot
EN ≤ Ktot

PN

with Rtot the total data rate of the timeslice building, Ktot
EN the total output capacity of

the entry nodes and Ktot
PN the total input capacity of the processing nodes.

Giving the limited input capacity KPN of a single processing node, multiple nodes must
receive TSCs simultaneously to utilize the network. Consequently, each entry node must
buffer data for each receiving processing node. With sTS the target size of a timeslice the
total amount of required entry node buffers can be expressed as

BEN = sTS ·Rtot ·
1

KPN
. (4.5)

It can be seen that the required buffer space in the entry nodes directly depends on the
input capacity of the individual processing nodes. A higher KPN thus has a direct positive
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effect on the required buffer size of the entry node. The total input capacity of the process-
ing nodes Ktot

PN, however, is not used. This circumstance has to be considered primarily in
a system with much more processing than entry nodes. Analyzing the bandwidth require-
ments in such a system suggests connecting the processing nodes at a reduced bandwidth.
However, (4.5) shows that this directly increases the buffer space requirements on the
entry nodes. Since the total input capacity of the processing stage is not included in the
equation, the network can be designed with a corresponding blocking ratio without having
to increase the required buffer space.

Dimensioning of the processing node buffers

For efficiency reasons, processing nodes should be operated at the highest possible utiliza-
tion in order not to waste compute capacity.21 To avoid processing nodes waiting for data
a timeslice queue before analysis is needed. The buffer size needed for timeslice building
on the processing nodes is then:

BPN = sTS · nqueue · nPN . (4.6)

with sTS the maximum size of a timeslice, nqueue the number of queue slots and nPN the
number of processing nodes.

For a real system, additional slots for derandomization may be needed. Whether this is the
case depends on the distributions of timeslice building and processing times. In general,
a higher surplus in KPN allows for broader distributions without the need for additional
slots. This shows that also the buffer space on the processing nodes depends on their
respective input bandwidth KPN.

As a result, the memory requirements for both entry and processing nodes can be deter-
mined from the given equations. It has been shown that a surplus on KPN relaxes the
demands on buffers for timeslice building on both types of nodes. Considering this in the
design of the timeslice building network allows optimizing the cost by finding the ideal
ratio between network resources and host memory.

4.5.3 Inter-cluster connection

The split of the FLES cluster into an entry portion housed near the experiment and a
processing portion housed in the Green IT Cube implies that all experiment data has to
be transmitted between these two sites. Both clusters foresee InfiniBand as their main
interconnect. This suggests using InfiniBand for the inter-cluster connection as well, sav-
ing the need to bridge to a different network technology. The planned cable route runs
clockwise around the southern FAIR campus, bridging a cable distance of approximately
1000 m.22 This exceeds the typical application range of standard InfiniBand equipment
21If the cluster provides excess compute capacity, nodes can be removed from the online system and utilized
for other tasks.

22The current planning foresees up to 10 144-fiber trunk cables.
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Figure 4.25: Overview of the long-haul test setup in its maximum configuration using
2.4 km of fiber. For shorter distances fiber elements are removed from the
link by changing the patches.

which is, e. g., for EDR speeds below 100 m. Specialized long-haul InfiniBand equipment
is available but targets reach from 10 km to 40 km. Such equipment has a substantially
higher port cost and would not be cost-efficient for the FLES application. The FLES
concept aims to use standard InfiniBand switches and mid-range optical transceivers to
connect the cluster.

The physical reach of the connection is mainly dependent on the optics used. The dis-
tance implies single-mode optics. For this a large number of suitable optical transceivers
are available in the market. A good match are for example Ethernet BASE-FR4-style
transceivers capable of reaching 1 km over OS2 fibers. Another possible option are PSM4-
style transceivers. This style of transceivers can be more cost-efficient as they do not
employ CWDM optics to multiplex 4 lanes to a single fiber but use 4 pairs of fiber in-
stead. While this style usually is employed below 500 m some versions cover the needed
1 km. The exact choice of the transceiver is dependent on the final InfiniBand equipment
and will be made accordingly. Purchasing suitable transceivers is not expected to be
critical.

Another limit for any reliable network connection is imposed by the available buffers
needed to compensate for the link delay. Any data needs to be buffered at the sender
until it is acknowledged by the receiver. The amount of buffers needed is defined by the
bandwidth-delay product Sbuff = B · trtt. InfiniBand implements the transport layer re-
sponsible for reliable transmission in hardware. Consequently, the buffers are provided
by the InfiniBand hardware and are more limited than software buffer approaches. For-
tunately, current InfiniBand switches allow, at least partially, the collapsing of buffers
reserved for quality of service (QoS) features into a larger buffer at the expense of QoS.
In theory, this should increase the reach of the network sufficiently for CBM demands. To
prove the feasibility of this concept a real-world network end-to-end test was performed.

A schematic overview of the setup is depicted in Figure 4.25. All tests were performed using
Mellanox InfiniBand EDR (100 Gbit/s) equipment. An Intel Skylake-SP based server with
2 Mellanox ConnectX-5 HCAs served as data source and sink. Both HCAs were connected
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Figure 4.26: InfiniBand EDR bandwidth measured for different virtual lane settings and
distances. The line is the fitted theoretical behavior, dmax is the calculated
limit without bandwidth reduction.

to one SB7700 switch each using short copper cables. The connection under test was
realized via a single-mode fiber test setup allowing to test connections with distances of
up to 2400 m in increments of 400 m and Mellanox PSM4 transceivers certified for up to
2 km [55].

The used switch supports up to eight virtual lanes. The InfiniBand standard implies that
each virtual lane has an independent, non-shared set of transmit buffers. Configuring
the switch to fewer virtual lanes is expected to collapse buffers of non-used lanes to a
larger buffer. Bandwidth measurements were performed for configurations with eight,
four, and one virtual lanes. For each configuration, the seven possible distances starting
with 2 m were measured. All distances were cross-checked by measuring also the RTT and
calculating the speed of light.

Figure 4.26 shows the results of these tests. The dots are the measurements. The line
is the fitted theoretical behavior. The expected bandwidth is limited by the maximum
bandwidth Bmax the physical link is capable of and the bandwidth-delay product. Once
the available buffers are exceeded the bandwidth is expected to drop ∝ 1/d. The resulting
theoretical bandwidth can be written as:

B(d) =
{
Bmax if d ≤ dmax

Bmax · dmax
d if d > dmax

(4.7)

where dmax is the distance at which the buffers are exceeded. For the plot dmax is deter-
mined from the measurements via a least squares fit for Bmax · dmax

d .
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Figure 4.27: A generic, two-level, fat-tree style network; constructed as a variant of a 3
stage Clos network.

The measurements show a very good agreement with the theory. The maximum possible
reach for one virtual lane, without loss of bandwidth, has been calculated to be approxi-
mately 1020 m. The maximum distance for one virtual lane is approximately eight times
the distance for 8 virtual lanes leading to the conclusion that in this case buffers are fully
collapsed. For four virtual lanes, the calculated maximum distance is significantly less
than what would be expected from a doubling of buffers. This may be caused by a more
complex buffer behavior but does not pose an issue for the foreseen use case.

The measured distance is sufficient for the needs of CBM. Additionally, there were no
issues observed when running the links beyond this limit. So in case, the cabling distance
increases it is still possible to employ this method at the cost of bandwidth reduction. It is
expected that also future generations of InfiniBand switches will allow to collapse buffers
as this feature is also employed by specialized InfiniBand long-haul equipment. In this
case, also buffers of different ports are collapsed which is not possible with the standard
firmware.

4.5.4 Network architecture

The split into two sub-clusters leaves different options on how to design the FLES network.
InfiniBand fabrics are commonly constructed with fat-tree style architecture23. A generic
example of a two level fat tree is given in Figure 4.27. The long connections between the
FLES sites should be switch-to-switch connections (in contrast to connecting directly to an
HCA on one or both sides). First, the current HCAs do not provide enough power budget
for the currently available transceivers. It is possible that this will change in the future,
but it would be unreasonable to limit choices. Second, being able to switch connections
will allow data aggregation, load balancing, and fault-tolerance for the long connection
and thus reduce the number of overall needed links.

The simplest network architecture is to split a single fat tree over both clusters. An
example for such a design is depicted in Figure 4.28. The example is based on InfiniBand
HDR (200 Gbit/s) technology. The given numbers are the maximum possible values for
this specific configuration and serve for illustration purposes only. The final network will
be scaled depending on the needs and available technology. The spine of the network and
23Technically constructed as a variant of a Clos network and not as a fat tree in a strict sense.
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Figure 4.28: Possible network architecture connecting the entry and processing cluster via
a common fat-tree network.

most leaf switches are situated in the Green IT Cube. Some of the leaf switches are placed
at the CBM site and cross-connected with long fiber connections to the spine forming a
fat tree.

Data flows primarily from entry to processing nodes and there are more processing nodes.
Thus the network could be designed with an asymmetric blocking ratio with higher block-
ing on the processing site. However, this architecture has several disadvantages. The
communication pattern imposed by the nature of the timeslice building problem requires
any-to-any communication between entry and processing nodes. Furthermore, without ex-
plicit scheduling, all entry nodes target a single processing node at the same time. While it
has been shown that these challenges can be handled, it requires a well-balanced network
and fine-grain control over the routing patterns to gain good performance. Otherwise,
the communication is prone to problems like head-of-line blocking. Considering the FAIR
cluster is shared with other experiments and especially network resources might not be
exclusively assignable to CBM also during CBM beam times this can pose a serious issue.
Secondly, this architecture implies that there is no substantial local interconnect between
the entry nodes without using parts of the processing cluster. This makes it impossible
to run any CBM activities such as commissioning and cosmic campaigns when the shared
processing resources are blocked by other users or are not available.

To circumvent these issues and increase flexibility and scalability a different network ar-
chitecture is foreseen. An example for this architecture is depicted in Figure 4.29. This ar-
chitecture foresees a fat-tree timeslice building network at the entry cluster site to perform
local timeslice building. Instead of sending timeslice components directly to the memory of
the appropriate processing nodes, timeslice building is performed locally among the entry
nodes. Full timeslices are built to the memory of the entry nodes and forwarded as single
packages to the processing node. This leaves the most critical communication patterns in
the local, non-shared network. This local network could be directly connected to the Green
IT Cube network similarly to the previous example. However, it is more practical to keep
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the networks separated and create this connection on application level. This allows fully
independent control over both resulting networks, routing patterns, and communication
protocols. The additional network ports needed can be gained cost-efficiently by utilizing
dual-port HCAs. The switch layer terminating the long fibers can be scaled independently
of the local network which makes it easier to scale to lower rates for initial commissioning
setups.

Additionally, this option is very flexible in terms of network technology used within the
FAIR cluster and to connect the two sites. In case another network, e. g., Ethernet is
used in the Green IT Cube, the entry nodes can easily be equipped with this technology
without the need for specialized hardware gateways. The additional resources needed to
realize this architecture are reasonable. The given example provides similar connectivity
and slightly higher bandwidth as the first example at the cost of two additional switches.

4.6 System integration

4.6.1 Discussion of failure modes

Building and commissioning a high-energy physics experiment is a highly complex task. As
most systems are unique, without a full-scale prototype, some errors or instabilities will be
introduced into the final setup. Also, the FLES entry stage serve as readout infrastructure
in detector prototype tests, which cannot be expected to operate flawlessly. Therefore, the
FLES must be able to cope with errors of other systems without affecting the stability of
the FLES itself. During beam periods, CBM has to run reliably and continuously to record
as much data as possible. It is essential to identify and handle failure modes efficiently to
maximize system availability.
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Redundancy and internal failures Implementing redundancy on the entry node level
or further upstream is not a viable option. This would require some kind of switchable
network between entry nodes and detector electronics, which is not feasible. Entry nodes,
CRIs, and front-end links have to be treated as unique resources. Depending on the
running scenario and exact failure mode, it can be acceptable to record data with only a
subset of a detector subsystem. It is, therefore, crucial that a failing resource does not
impact data from other parts of the detector or block the entire system. Upstream failures
must not cascade downstream.

The FLES architecture assists this by clearly separating parallel elements. Input channels,
as well as complete CRIs, can be operated independently from each other without global
interactions between them. A failing CRI, for example, will not impact the readout of
other CRIs.24 Input synchronization is achieved implicitly via the microslice timestamp
and thus does not need explicit internal error handling.

Failing or stalling data consumers, e. g., the timeslice building or analysis task will stop
consuming data and eventually create back pressure. As the entry stage implements a
closed back pressure path, no immediate handling is needed. However, the back pressure
must be monitored and reported to the EDC to take countermeasures.

Failures of upstream components Failures of upstream components can be distinguished
into two categories: Failure modes for which only the microslice content is affected, but
the integrity of the microslice container is uncompromised, e. g., in case of failing front-
end ASICs or data transport to the CRIs. And failure modes for which the microslice
generation itself or delivery of microslices is erroneous, e. g., in case of a failing subsystem
microslice builder.

The microslice data model allows handling the first category without additional measures,
as it is data agnostic and all necessary information for data handling is available in the
unaffected microslice descriptor. Any corrupt microslice content will not impact data
handling within the FLES.25 The defined maximum size of a microslice protects the FLES
of being flooded with data in such cases (cf. Sec. 4.2.5). The data analysis software, which
is aware of the expected data format, has to detect and handle such errors.

If the generation of microslice is erroneous, the situation is more complicated. If some
microslice streams are created at a wrong rate or not received at all, the input buffers
before timeslice building will fill up and eventually stall the entire system if the situation
is not appropriately handled. Assuming such errors occur rarely, it would not be wise to
introduce a sophisticated treatment of such a situation. The increase in system complexity
would not be reasonable. Instead, the active data taking can be terminated and continued
after the error has been corrected or after the faulty component was excluded. For such an
approach to work, restarting data taking has to be reliable and fast. A matching concept
for an efficient and modular system startup is presented in Section 4.6.2. If such errors
24Assuming the failure does not crash the PCIe subsystem of the node.
25In case the detector system is aware of corrupt data, it can set the appropriate flag in the microslice
descriptor to signal such situations. The entry stage can relay the information to the EDC.
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frequently occur, terminating the data taking is not an option, and the error should be
handled dynamically. A feasible concept is to substitute missing or erroneous microslice
streams with dummy data, i. e., to create empty microslices. This way, subsequent ele-
ments of the data path do not need any specialized handling capabilities. Without any
data content, the system overhead of an empty microslice is negligible. Flagging the in-
jected microslice allows to easily distinguish between injected and recorded data based on
the microslice descriptors. This is important to be able to calculate the actual physical
acceptance of the detector during the analysis. An additional out-of-band channel can be
used to signal an error condition to the EDC system. Both information channels can be
used by the QA to determine the global system state and potentially abort the run if the
loss of data is considered severe.

In any case, a reliable failure-detection method is required. Especially failure modes in
which microslices are created at a wrong rate, e. g., when a subsystem unnoticeably lost
synchronization, can be difficult to detect. For that reason, the data model requires
empty microslices and defines a maximum microslice delay (cf. Sec. 4.2.5). Microslices
then serve as a heartbeat signal to determine if a source is healthy, even if the source has
no data to deliver. The maximum delay allows identifying rate mismatches. Receiving no
microslice within a given time span decidedly indicates that the corresponding data source
is misbehaving.

4.6.2 Modular configuration and startup concept

Starting a large and complex experiment, that comprises inter-dependent subsystems,
presents a considerable challenge on its own. All elements have to be configured properly
and in the correct order to work together. For CBM, these subsystems include all detector
FEE, the TFC, the EDC, and all components of the FLES. The detectors, for example,
need time information from the TFC to function correctly. A common issue, especially
during commissioning and in the early phases of the experiment, is that a detector subsys-
tem is submitting either erroneous data or no data at all. This is, in particular, a problem
if the start of data sending is synchronized between all subsystems and coupled to the start
of data recording. In this case, the error stays undetected until recording is started and
leads to a failing run. The required cleanup and restart procedure costs time otherwise
used to record data. Coupling the systems also means that the error probabilities are
combined, and the overall system becomes tedious to start.26

Additionally, it might not be possible to derive the exact state of a detector subsystem
exclusively from configuration results, and an analysis of its data stream is needed to
determine the quality of data. Having to start the full timeslice building and analysis
chain for such a check is unnecessarily time-consuming. Instead, this functional check can
often take place locally on the entry node. This asks for a method to enable local QA
before timeslice building.
26The reliability of a serially coupled system is the product of the reliability of the individual components.
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With this in mind, a startup concept for the CBM data taking was developed. It exploits
the free-streaming nature of the readout system, to minimize dependencies and couplings
of individual components. It follows two main paradigms:

• Decouple the individual branches of the readout-tree. The state of one branch should
not impact the states of other branches.

• Decouple data producers from data consumers. The state of a consumer should not
influence the state of a producer.

Both paradigms go hand in hand. Figure 4.30 shows a schematic overview of a possible
system configuration. As there is no central trigger mechanism, the readout channels
already work independently. It is important not to introduce any artificial global coupling
in later stages. The entry stage design maintains the separation by handling individual
input components independently. However, for timeslice building data streams have to
be synchronized globally. The microslice data model achieves this synchronization solely
based on the microslice timestamp. It is not necessary to introduce additional synchronous
events, e. g., a synchronous start of all input data streams. Streams can be handled
without relying on stream history. This allows all branches of the readout tree to start
independently of each other in any order. It also means that individual branches may be
reset or reconfigured, while others are left in their current state.27

Similarly, the FLES data chain is designed in a way that no strict startup order is required.
Shared memory interfaces can be utilized to separate different stages into individual pro-
cesses. If sources are allowed to discard data when the consumer is not available, the
coupling between producer and consumer can be eliminated. Consumers can be freely
27This requires that branches can (re-)synchronize with the TFC timing system without global operations.
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attached and detached without any changes to the detector FEE or CRI configuration. In
the configuration phase, any stage, upstream or downstream, may be restarted without
influencing the other stages. Obviously, during data taking, a missing consumer has to
be regarded as an error condition. With decoupled producers and consumers, a local QA
process can attach to the CRI data publisher and execute any checks before starting the
timeslice building. Once the state of the system is verified, the timeslice building software
can seamlessly attach.

In summary, implementing both paradigms delivers a flexible, easy to start system with
minimal dependencies. Any branch of the readout tree can be configured and reconfigured
independently without influencing the rest of the system. Together with the modular
startup order, fast reconfiguration cycles of the system are possible as only the affected
components need to be configured or restarted, and the overall system availability is
increased.
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Common Readout Interface

5.1 Introduction

The Common Readout Interface (CRI) is an FPGA-based PCIe card that serves as an
input interface between the ReadOut Boards (ROBs) connected to the front-end electronics
(FEE) and the input stage of the First-level Event Selector (FLES). The CRI is the last
hardware stage of the CBM data aggregation concept (see Sec. 2.2.2) and a central element
in the data and controls flow (see Sec. 2.2.3).

See Figure 5.1 for an overview of the CRI’s major building blocks. Most CBM detectors
use the GBTx [32] data aggregator ASIC. In CBM, data and control traffic is combined
on the GBT links1. The CRI provides therefore three interfaces

• to the FLES via the FLES Interface Module (FLIM)
• to the EDC via the control bus bridge and DCA
• to the TFC system

1The design decision is described in Section 2.2.3.
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and acts as traffic multiplexer/demultiplexer:

• slow control command requests and potentially fast control throttling requests dis-
tributed via the TFC are multiplexed on the downlinks.

• the uplink traffic is demultiplexed:
– the hit data stream is sent via the FLIM interface
– the controls returns are sent to the controls system interface
– status and alarm messages are buffered for inspection via the controls interface

and potentially trigger the alarm system or are sent to the TFC for central
congestion handling.

The CRI is also a central element in the clock and time flow (see Sec. 2.2.4). The 40 MHz
system clock and time information is received from the TFC over an optical link. All
GBT links run synchronously with the system clock2 and are operated with deterministic
latency in the downlink direction. This allows the system clock to be forwarded to the FEE
and the local time counters in each readout ASIC to be synchronized via the downlinks. A
timestamped hit message is sent over the uplinks when the FEE detects a detector signal
above threshold. The CRI receives these hits, typically reformats them and, based on the
received timestamp, packages them into microslice containers (see Sec. 4.2.1).

The CRI is a hardware component used by all CBM detector systems, regardless of whether
they use GBT links or other link concepts as in the case of the RICH detector. Each read-
out chain requires a dedicated FPGA design because the raw data formats and associated
data processing as well as front-end control protocols differ. However, the designs share a
common base structure providing the interfaces to the central systems, i. e., FLES, TFC
and controls via the control bus bridge and DCA.

Details about the CRI board as well as the core FPGA design components are presented in
this chapter. The interfaces to the FLES and TFC systems are presented in the respective
Chapters 4 and 6.

5.2 The CRI board

5.2.1 Hardware requirements

It is obvious that a CRI board should have a large number of optical link interfaces
for the GBT links, a PCIe interface with adequate DMA throughput, and an FPGA large
enough to implement all the required functions. There are numerous boards on the market
that meet these generic requirements. However, the CRI role as the central element in
the flow of clock and time (cf. Sec. 2.2.4) leads to very specific and unusual hardware
requirements.

In a standard board design, the reference clocks of the communication links and the system
clock of the processing logic come from different sources. The link reference clocks must

240 MHz GBTx frame rate and 4.8 Gbit/s raw link speed (cf. Sec. 2.2.4)
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have very low clock jitter and are therefore routed on the board via dedicated clock lines
and not via the normal FPGA clock tree. The clock concept is therefore part of the physical
board design and cannot be changed afterwards via the FPGA configuration. Furthermore,
in usual systems, different boards operate with their local clock frequencies which differ by
the typical tolerance of crystal oscillators. This is sufficient for the usual communication
protocols, since elasticity buffers and flow control ensure proper data transfer, and small
latency fluctuations during transmission are not relevant.

The CRIs receive their clock from the TFC downlink, and the optical link interfaces and
the processing logic operate with phase-locked clocks. In effect, the FEE interface logic
on all CRIs runs fully synchronously. This requires a very specific clock distribution of
the board. An additional difficulty is, that the jitter of a clock recovered from an optical
link is much higher than the jitter required for a transmit clock3. The recovered clock
must therefore be filtered with a low bandwidth PLL to reduce the clock jitter in a stage
often called jitter cleaner. Last but not least, it must be ensured that the system starts up
properly. The fast transceivers, like an MGT on a Xilinx FPGA, require that the reference
clock closely matches the link frequency to properly receive an incoming link.

These requirements are similar across experiments using GBTx-based readout and led to
the development of custom boards, e. g., the PCIe40 board used by LHCb and ALICE [57,
58] or the BNL-712 board used by ATLAS [59, 60].

The requirements can be implemented most easily with modern DDS-based clock man-
agers. They provide very good jitter filtering and offer, unlike an analog PLL, a well-
defined startup frequency4. This leads to a clock distribution with the key features

• the clock recovered from the TFC downlink is the input of a DDS-based PLL, which
acts as a jitter cleaner and generates the required phase-locked clocks.

• the reference clocks of all optical link transceivers are driven by the clock manager.
The well-defined startup behavior ensures that the TFC downlink locks when it
comes up. All links send data with the same frequency.

• the required system clocks for the FPGA logic come from the same clock manager.
This ensures that the link transceivers and the processing logic run synchronously
and elasticity buffers can be bypassed, essential for the implementation of determin-
istic latency.

Further requirements for the CRI board result from the overall environment:
3The clock data recovery circuit in the link receiver is optimized for best data recovery, the internal PLL
has a high bandwidth to find the optimal sampling point even in case of inter-symbol interference. This
gives a good bit error rate, but high jitter. The link transmitters, in turn, must be operated with a clock
with very low jitter to achieve the best signal quality. See [56] for tests with an early prototype.

4All-digital designs not only provide a well-defined startup frequency, but can also freeze a once-locked
frequency in case the input signal is lost. This greatly simplifies the handling of start-up and loss of
input signal. With conventional VCO-based PLLs, the frequency can drift very far from the nominal
value. The GBTx uses a VCXO-based PLL with a very narrow pull range to solve this problem.
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• The optical connection between the experiment and the server room is implemented
with OM4 fibers in MTP-24 bundles (cf. Sec. 5.5). Optical transceivers must support
MTP bundles and the GBTx bit rate of 4.8 Gbit/s.

• The optical connection to the TFC consists of a single fiber pair. An additional
optical transceiver, such as an SFP, is required for this connection.

• To minimize porting and maintenance efforts, the FPGA chip should be compatible
with the GBT-FPGA core [35], which is available from CERN in an open GitLab
repository [61].

• The uplink traffic in the GBT link containing the readout data is usually much higher
than the downlink traffic. Therefore, the GBTx is often used in a configuration,
where a single “master” GBTx connected to both uplink and downlink fibers is
accompanied by additional “slave” GBTxs connected only to uplink fibers. Dedicated
radiation-hard optical components – VTTx (with two transmitters) and VTRx (with
one transmitter and one receiver) [34, 62] support that configuration. Additionally,
the GBT-SCA ASIC [63] provides the I2C communication between the master and
slave GBTxs. ROBs with a single GBTx and a VTRx are referred to as ROB1,
while ROBs with three GBTx, a GBT-SCA, a VTRx, and a VTTx are referred
to as ROB3. These connection topologies must be supported by both the optical
connection system and the CRI board.

5.2.2 The CRI1 prototype board

In absence of the final CRI board, the development and verification of the individual
subsystem readout chains is based on the BNL-712 v2 card [59], which was specifically
designed at BNL for the termination of GBT links and is used by the ATLAS experiment
for the FELIX system [60]. This board serves as a CRI prototype and has the CBM
internal designation CRI1. The CRI1 board (see Fig. 5.2) is a 16-lane PCIe Gen 3 board
equipped with a Kintex UltraScale XCKU115 FPGA. This FPGA is divided into 2 Super
Logic Regions (SLR). To efficiently transfer data from both SLRs, each of them implements
a separate 8-lane PCIe interface. A PCIe Switch (PEX 8732) aggregates these interfaces
to a single 16-lane PCIe Port to the host. Eight Avago MiniPOD transceivers surrounding
the FPGA provide a total of 48 bidirectional optical links. These links are connected to
two MTP-48 connectors present on the PCIe I/O bracket.

In the deployed version, only 47 MGTs are routed to the MiniPods. One MGT is routed to
a Timing Mezzanine Card (TMC) socket, which allows the card to be equipped with differ-
ent timing interfaces. Two different TMCs are currently used in mCBM: a TTC-PON type
adapter5 to operate the CRI1 as TFC Endpoint, and for usage as a TFC master, a modi-
fied adapter6 to synchronize with the GSI/FAIR accelerator’s WhiteRabbit infrastructure
(cf. Sec. 6.3).

5the SFP cage is used for the TFC link
6equipped with two SN65LVDS1 LVDS drivers used as receivers for PPS and 10 MHz clock inputs
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Figure 5.2: Photo of the CRI1 board (BNL-712 v2). The Kintex UltraScale FPGA is
hidden below the black fan. It is surrounded by 8 Avago MiniPod transceivers,
which interface to the optical fibers. The optical coupler on the left hand side
consists of two MTP-48 connectors. The mezzanine PCB in the top left holds
the interface to the TFC system. A PCIe switch combines the two SLR of
the FPGA to the PCIe Gen3 x16 interface. The board is powered by voltage
converters located on the right hand side of the PCB.

The CRI1 uses the SiLab Si5345 clock manager chip. In the configuration used in CBM, it
receives the clock recovered from the TFC downlink, acts as a jitter cleaner, and generates
the reference clocks for the optical links as well as the system clock for the FPGA logic.
This clock manager is a DDS-based all-digital design and perfectly fulfills the clock system
requirements outlined in Section 5.2.1 (see also [64]).

CBM participated in a joint production run of the BNL-712 at BNL and acquired enough
boards for the operation of mCBM and the ongoing development of the readout chain.
The CRI1 prototype board is in use in mCBM since 2021 and will be used for the TFC
system (cf. Chapter 6) and possibly for one of the smaller detector systems in the final
CBM setup.

5.2.3 The CRI2 production board

Some components of the CRI1 board, most notably the Avago MiniPOD transceivers, have
been declared end-of-life. Therefore, the planning of a successor board was started, the
CRI2, based on the experience gained from CRI1. The CRI2 has a very similar overall
concept as the BNL-712 board, but is based on newer components. Since the total cost of
the entry nodes is dominated by the cost of the CRI boards, optimizing the overall cost
per GBT link is an important development goal. The current plans have a design target
of 36 GBT links and the following key features:
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subsystem ROB3 ROB1 GBT links CRI1 CRI2 CRI boards
BMON – 16 16 1 1
MVD 40 – 120 5 5
STS 576 – 1728 72 72
RICH – – – 8 8
MUCH 216 120 768 33 33
TRD8 544 – 1632 68 68
TOF9 – 564 564 25 25
PSD – – 16 1 1
TFC – – – 6 6
total 1376 700 4844 16 203 219

Table 5.1: Readout components per subsystem

• use Samtec FireFly optical transceivers
• use 3 MTP-24 connectors, offering optical connectivity for 12 ROB3 or 36 ROB1
• use a Xilinx Kintex UltraScale+ XCKU15P FPGA with 44 GTH (16.3 Gbit/s) and 32

GTY (32.75 Gbit/s) transceivers
• use 36 GTH for 3× 12 GBT links
• use 1 or 2 GTH for the TFC connection
• use 16 GTY for the PCIe interface (Gen3, single x16 or dual x8 7)
• use a clock manager similar to the Si5345

This board is less complex than the CRI1 in both hardware PCB design and FPGA design
because the FPGA is not split into multiple SLRs and no PCIe switch is used.

5.2.4 Production planning

The full readout system of CBM will consist of 219 CRI boards. Table 5.1 summarizes
the foreseen readout components for all subsystems.8,9 Small subsystems like RICH and
TFC intend to use the already acquired CRI1 cards, while larger subsystems like STS
require large quantities of boards, which make a CRI2 production necessary. The required
number of CRI boards depends on the readout architectures of the individual subsystems,
which is explained in more detail in Appendix B.

Based on the current design, we have evaluated the consumption of the available logic
resources of the designated FPGA. As expected, the resource consumption scales heavily

7dual interface for use with PCIe bifurcation (cf. Sec. 5.3)
8The numbers refer to the baseline configuration of a full TRD-1D. In case the inner zone is constructed
using the alternative TRD-2D design, about 30 % additional hardware is required in the readout chain.
In this case the TRD-1D plans to use 48 (cf. Sec. B.2.1) and the TRD-2D up to 26 CRI2 boards (cf.
Sec. B.3.1).

9The numbers do not include the BFTC detector foreseen in the innermost part of the TOF wall. We
estimate 3 additional CRI2 boards will be required to read out this system (cf. Sec. B.4.1).
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with the number of used optical links. With an envisaged number of 24 links, the typical
utilization of the available LUTs and the BRAM will be less than 70 %. This estimate is,
however, conservative.

One should note that for the current FPGA design, a few features are still missing, e. g.,
the alarm handling and the fast control. On the other hand, there is room for optimization,
e. g., the usage of URAM instead of BRAM so that we expect that the utilization can be
further reduced. This would allow the increase of the number of links up to that limited
by the hardware. The granularity of the systems which use the ROB3 is three links, so
a number of links of 27, 30, 33 and 36 would be possible, and for the TOF, which uses
ROB1, any number of links may be chosen. This will allow us to aim for the most cost
efficient solution after some further investigation and development,

It is important to realize that no upgrade concept is needed for the CRI2. The function of
the CRI is to serve as an interface between a well-defined number of GBT links (4.8 Gbit/s)
into the entry nodes. As long as the CRI2 to be implemented meets these requirements,
no further improvement in performance can be achieved through further upgrades.

5.3 FPGA design prototype

The CRI’s FPGA design is the major part of the CRI, defining most of its functionality.
The CRI fulfills the same task for all CBM detector systems. Consequently, the required
FPGA designs for the individual systems overlap considerably in their functionalities. Fig-
ure 5.1 gives an idea of the needed components. To limit the development and integration
effort, the design paradigm is to share as many components as possible between different
designs. Naturally, all designs share the interface modules to the central systems, i. e., the
FLIM, the TFC Endpoint, and the controls interface engine. The common controls inter-
face implies that the modules also share a common on-chip bus, a Wishbone bus in this
case, and a common controls driver. The front-end interface, detector message processing,
and stream merging are inherently subsystems specific as they implement communication
and processing specific to the detector architecture and front-end ASIC. However, also
here common modules can be found, such as the GBT interface used by most of the detec-
tors or the ASIC communication protocol engine HCTSP shared between the SMX and
SPADIC ASICs (and thus by STS, MUCH, and TRD).

Many components of the FPGA design, especially the time synchronization of the front
ends and the processing of detector messages, are far from trivial. To prove the fea-
sibility of the concept, CRI1 prototype FPGA designs for all foreseen subsystems have
been implemented and are continuously used in the mCBM demonstrator (cf. Chapter 7).
Wherever practical, the components have been written in a generic fashion to allow an
easy transition to the CRI2 board.

As mentioned previously, the CRI1 FPGA features two SLRs and the board routes one
PCIe interface to each of them. Naturally, the CRI1 FPGA design has to follow this
partitioning. The full data and control path is duplicated for each SLR. Only the TFC
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Endpoint and other unique resources are instantiated once, and the respective signals
cross the SLR boundary. Duplicating the data path into two independent portions is
easily possible because, for resource efficiency, it is not foreseen to merge all inputs into
a single microslice stream, but to use multiple FLIM DMA channels. These channels
are designed to work independently of each other and do not need to share a common
PCIe interface (cf. Sec. 4.3.3). Even without the constraint from multiple SLRs, it can
be beneficial to employ a similar partitioning in the CRI2 design. Splitting the available
PCIe lanes into two independent interfaces with half the width can substantially relax the
demands on the data multiplexing before the PCIe core. To support such a case without
extra components like a PCIe switch, the board design can make use of PCIe bifurcation.
Whether this option is more efficient is subject to ongoing research.

The following sections give a more detailed overview of the FPGA design, with a fo-
cus on the common modules. The FLIM is described in Section 4.3. Details about the
subsystem-specific design prototypes can be found in Appendix B. Unless explicitly noted,
the information applies to both flavors of the CRI board.

5.3.1 The PCIe host interface

Communication with the host is implemented via a PCIe interface [49]. All PCIe protocol
layers up to the transaction layer are provided by the FPGA’s PCIe core. The current
CRI1 core is interfaced via multiple AXI4-Stream interfaces, essentially exchanging PCIe
TLPs extended with some metadata, with the user logic. All additional logic like bus
bridges mapping the PCIe address space to an on-chip bus or DMA engines has to be
implemented in user logic. While the details of the core interface are in general FPGA-
specific, the basic idea of providing a TLP-based interface is present in most FPGAs.
Consequently, any developed logic can usually be ported to a new FPGA with reasonable
effort.

In the case of the CRI, the PCIe interface provides host communication for two major
tasks: the data path to the FLES and the control system steering the subsystem logic
and front-ends. Requirements for these tasks differ widely. The FLES interface requires
a high-throughput DMA engine to provide sufficient bandwidth (cf. 4.3.4). For the con-
trol interface, data transfer via PIO is sufficient, but it must be able to handle different
subsystem designs and communication with possible faulty components connected to the
FPGA (cf. 5.3.2). While both tasks use the same physical PCIe interface, it is favorable
to separate them logically. This allows for better optimization and more independent
development. The CRI design implements this separation via different PCIe physical
functions10. In addition to a separated address space, which could also be achieved by
mapping to different BARs, this allows the binding of different device drivers to each func-
tion. With this, a custom kernel driver is only needed for the FLES interface. Without the
need for DMA buffers, the control portion can be based on the generic PCI UIO driver
10A PCIe physical function is a full-featured PCIe function which is discovered, managed, and controlled
like any other PCIe device.
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which is provided by any modern Linux operating system. Keeping the custom kernel
driver focused on a single task allows for better maintainability.

From the point of view of FPGA logic, the PCIe core still provides the same TLP inter-
face, only with the appropriate header bits set. This is not different from splitting into
different BARs. An arbiter module is used to route incoming requests (i. e., PIO) to their
appropriate destination and stream merge outgoing completions. Outgoing requests (i. e.,
DMA) are routed directly to the core as they are only used by the FLES interface.

5.3.2 Controls interface

The CRI has two control realms (cf. Fig. 5.4): the FLIM configuration bus (cf. Sec. 4.3.3)
and the control bus for all other register resources, which is described in this section. The
control bus is implemented as a Wishbone bus.

Each CRI design is based on the same common infrastructure entities so that the DCA
and detector control software can handle each design with the same interface and basic
methods. All these entities are stored and maintained at a central place in a repository
(cf. Sec. 5.3.5) to ensure that they are always up-to-date.

The address space of the control bus is divided into two regions. The lower part of the
address space contains registers at fixed addresses11 in an area called Zeropage, which is
further described below. The upper part contains registers (and memory) that are different
for each design. During the compilation process of the FPGA design, these addresses are
dynamically created together with address decoders and stubs used in the FPGA design
and configuration files used by the access software. This ensures that the software always
uses the correct address configuration. Since the control bus is implemented as a Wishbone
bus, the AGWB tool is used as an address generator, which is further described below.

Control bus interface

The control bus interface is a system of bridges that convert the controls TLP stream
provided by the TLP switch into control bus transactions. This bridge system provides
two independent interfaces: one is used for the Zeropage, and the second one is used for
the dynamic part, which is generated via the AGWB. With this concept one ensures that
failures of the control bus itself can be monitored via a Zeropage access.

The key design factor for the bridge that handles the AGWB generated main part of the
Wishbone bus was error handling, especially for accesses to Wishbone bus addresses that
are not connected to an object. In a simple direct-mapped approach, where the PCIe
PIO accesses are translated 1-to-1 into Wishbone accesses, the only way to handle such a
condition is a bus error on the PCIe side, which would be forwarded as a segment fault
signal to the software. This is very difficult to handle in a modular fashion, especially in
a multi-threaded process like the DCA.
11these addresses are equal per convention for all designs
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The bridge implementation takes advantage of the observation that the Wishbone bus in
the CRI uses 32-bit data words, while the PCIe transactions and the controlling software
can easily handle 64-bit data words. This allows error control and status information to
be placed in the upper bits of a 64-bit data exchange. The bridge maps each Wishbone
bus address to a 64-bit PCIe address and adds a few special registers for error handling in
the Zeropage. A write transaction is implemented as posted write, but Wishbone errors
are recorded in the bridge. A read transaction returns the value read from the Wishbone
bus and the error status of that read and previous writes in the upper bits of the 64-bit
data word returned over PCIe. This allows most Wishbone access sequences to be handled
with one PCIe PIO per Wishbone access, which is essential for good performance. Only
the case of a write operation, where the error status must be immediately known, requires
two PCIe PIOs. The application software uses a very thin library that encapsulates the
bridge protocol. Wishbone reads and writes are done via methods calls12. They come in
two variants, which either return the error status as a return code or throw an exception
in case of an error. In most cases, the latter leads to more compact code and modular
error handling.

Wishbone address generation

One of the obstacles is that the register set differs for each design. In addition, each
design could be compiled with different configurations. Handling the different register sets
by an external database and/or scripts could be tedious, as one must ensure that they
are always consistent with the current designs. In this context, it should be noted that
changing information in different places should always be avoided.

In addition, handling all blocks and registers in a single component appeared to be ex-
tremely inconvenient. Routing of signals connected to those registers between the blocks
and through the multiple hierarchy levels was messy and error-prone. To avoid this, the
registers should be located close to where the connected signals are used. This means,
that a hierarchy is always recommended.

Therefore, the design flow uses the “Address Generator for Wishbone” (AGWB) [65]. The
main function of the AGWB is to create control and status Wishbone registers, as well as
hierarchy blocks via an XML description.

Zeropage

Besides error information about failed transactions on the control bus and some test and
identification functions, the most important part of the Zeropage is the storage of the
“BuildInfo”, a ROM in ASCII format at a fixed address, which contains information
about the design loaded into the FPGA, the compile time, the git commit id, and the
git path. Using this information, the correct address map generated by AGWB can be
12The software overhead of method call and other data handling is negligible compared to the time of a
PCIe PIO transaction.
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located and used to configure the DCA. In addition, the Zeropage contains information
about the FPGA device DNA and the state of the CRI alarm system.

CRI alarm system

As the FPGA has limited logic resources, it is important that any actions that can be per-
formed in software are not implemented in hardware logic. One such example is a recovery
of a link, where certain steps must be executed in a specific order, but precise timing on
the system clock level is not required. This must not be confused with monitoring, which
also is done frequently but does not require an immediate response or action. Therefore,
a common and specified CRI alarm system is provided, consisting of a bus connected to
all relevant building blocks and an interface in the Zeropage monitored by the DCA. To-
gether with the corresponding handling of each type of alarm, this forms the global alarm
system.

To save resources on the FPGA, the bus itself is implemented as a sequential daisy chain
that starts and ends on the Zeropage. It is important to note that the alarm bus can only
transmit one alarm at a time, which is continuously forwarded to the Zeropage (“ringing”)
until the alarm is muted by the node. The first level alarm handler in the DCA will
identify the alarm source node, mute the alarm, and queue a request for the second level
handler. This frees up the alarm bus and allows multiple alarms from separate sources to
be processed in parallel.

The alarms have several priority levels:

warn: A situation that requires attention but has no immediate impact on data taking.

error: A situation that can be resolved by software interaction but does not require a reset
of the entire CRI or a stop of the run, e. g., a link has been lost and can be resynced.

fatal: A situation where the CRI must be reset or the data is completely corrupted, e. g.,
lost TFC synchronization.

It should be noted that the CRI alarm system bus is not designed to carry a large amount
of data, only basic source information. More detailed information must be retrieved by
the handler through registers of the alarm source node that return the node state. An
alarm response time on the ms scale is considered sufficient. Therefore, the control bus
interface does not provide an interrupt mechanism, and the alarm handling is based on
polling of the Zeropage with an appropriate rate.

5.3.3 TFC Endpoint module

All interaction between CRI and the TFC network is handled by the integrated TFC End-
point module, which abstracts from the internal TFC-related mechanisms. The Endpoint
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is accessible by other modules and provides the TFC clock and time counter. It also en-
ables the CRI to receive fast control commands and to send congestion status data to the
TFC Master.

The clock manager hardware on the CRI board guarantees that all clocks are continu-
ously available, regardless of the synchronization state, and are glitch-free even during
synchronization state transitions (cf. Sec. 5.2.1). Upon successful synchronization, they
are phase-locked with the TFC Master clock.

As to operation modes, the Endpoint can have three states:

free-running/standalone: the CRI runs on a local free-running root clock. This is the
default state at startup, before the Endpoint synchronizes with the TFC link. The
clocks have a frequency close to the nominal value, the time counter starts from
zero or a value set via the controls interface. The state can also be forced using
corresponding control bus registers for standalone operation.

synchronized: the CRI is synchronized with the TFC link, the clocks are phase-locked to
the TFC master clock, and the CRI time counter has the correct time. The transition
into this state is signaled via the CRI alarm system (cf. Sec. 5.3.2) and the DCA to
the EDC, which in turn will ensure that all on- and off-board components will be
initialized, starting with the GBT links and ending with the FEE ASICs.

desynchronized: the CRI has lost synchronization with the TFC link and is running on
the local free-running clock. The clocks have a frequency close to the nominal value,
the time counter is incremented and slowly deviates from the nominal time. The
state is interpreted as a fault, and the Endpoint does not attempt to resynchronize
until explicit user intervention via the control bus. The transition into this state is
also signaled via the alarm system to the EDC, which will start recovery procedures.

5.3.4 The GBT interface core

GBT-FPGA [35] is an FPGA core that enables communication with the GBTx chip. It
was developed at CERN as part of the GBT project [31]. Currently, it is available as an
open source IP core [61]. The official repository provides core components that implement
the transmission and reception data paths (both in standard and deterministic latency
variants) as well as the configuration of multi-gigabit transceivers (MGTs) for several
FPGA families. Another repository [66], which is a part of the GBT project, provides a
slow control interface for GBTx chips.

Latency-optimized multi-link design

The GBT-FPGA core used in the CBM experiment operates in latency-optimized mode
for downlinks, which is essential for the synchronization of the front-end ASICs. The data
is timestamped on the front-end ASICs, so the latency of uplinks is not important and
GBT-FPGA can work in standard mode in this direction.
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Figure 5.3: Routing of clocks and flow of data in the CRI1

In latency-optimized mode, the GBT-FPGA core in the TFC Endpoint produces a re-
covered clock of 120 MHz, which is synchronized with the clock received from the TFC
downlink (see Sec. 6.3). The recovered clock drives the Si5345 zero-phase-shift jitter
cleaner, which produces the low-jitter 120 MHz reference clocks for transmitters in the
GBT-FPGA cores (see Figure 5.3). In addition, the 120 MHz reference clock is delivered
to an FPGA MMCM that generates a 40 MHz frame clock that is common to all GBT-
FPGA cores. The MMCM provides a fine-phase alignment functionality. A dedicated
software routine uses the Rx header signal from GBT-FPGA to ensure the correct phase
of the generated 40 MHz word clock13. The word clocks and the frame clock are syn-
chronous due to a single source, but may be slightly phase-shifted due to fine differences
in trace and buffer latencies. Since a CDC between frame and word clock would be unsafe
in such a design, the frame clock and the word clock are shifted by a constant phase.
The value of this shift was determined by a calibration procedure that tested different
phase shifts in search of values that produce CDC errors in GBT-FPGA gearboxes. This
calibration value was selected for the whole experiment.

In the presented design, the latency between the common frame clock of the CRI and
different GBTx chips may differ slightly due to phase offsets between the different word
clocks. Phase shifts of less than a nanosecond are expected, which is below CBM synchro-
13For a 40 MHz signal generated from a 120 MHz reference, there are three possible phases. Only one of
them is correctly synchronized with the data stream transmitted via the TFC link.
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nization requirements. As a safety measure, the GBT link errors are monitored since an
increased error rate may indicate CDC errors.

Adaptation of GBT-FPGA for CRI

For the usage in CBM, several minor improvements to the official core have been made.
Most of them focus on additional control and diagnostic methods suitable for CBM use.
Several status and control registers have been instantiated in the central core wrapper.
Some of the registers are instantiated per link (error counters and status registers), while
others are common for the whole bank (configuration and controls). Other modifications
were introduced to simplify debugging. The pattern generator and checker have been
modified so that custom test patterns can be specified via a control register. It is also
possible to disable data scrambling and descrambling, an option useful for loopback tests.

In addition to the improvements to the core itself, a dedicated wrapper component has
been created that instantiates the GBT-FPGA and the GBTx slow control interfaces in
configurations specific to the readout boards used in the experiment. Such encapsulation
simplifies sharing of the core between different detectors.

5.3.5 Design integration and workflow

The CRI FPGA designs are composed of common and subsystem-specific modules. To ease
the integration of all needed components into functioning designs and promote component
sharing between designs, all modules are consolidated in a common repository.14 All FPGA
designs are built from this common repository. This allows for centralized management
and integration of designs and is especially advantageous when common modules need to
be updated or fixed. All changes can easily be checked against all designs and in most
cases do not require the involvement of all subsystem designers.

The development workflow follows the common Git fork and pull flow. Designs used for
data taking are required to come from the official CBM hardware repository. The full
FPGA build flow for all designs is automated and requires no human interaction. This
enables easy integration into any CI/CD application. Currently, the GitLab CI/CD is
used in conjunction with Docker containers that provide everything needed for the CRI
build flow. Not only does this CI/CD integration enable automated reviews of all designs,
the resulting FPGA configurations are also used as the official designs for data taking,
guaranteeing full traceability of the used module versions. In addition to the FPGA
designs, the build flow produces the register mappings for each design, which are centrally
available as CI/CD artifacts.

14External components shared with other projects are added via submodules.
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5.4 The device control agent

The Device Control Agent (DCA) and the FLIM data publishing server (cf. Sec. 4.3.7)
are the only software components described in this TDR. In both cases, the software
design is closely intertwined with the FPGA design with the goal of only implementing
performance or time critical functions in the FPGA and doing the rest in software. Such
a hardware-software co-design helps to optimize both hardware cost and personnel cost.

The task of the DCA is to control all logic on the CRI board except for the FLIM section
and DMA data path (see Fig. 5.4). The DCA acts as a user-space driver that has exclusive
access to the CRI device registers and provides a high-level interface for the higher layers
of the CBM control software. A DCA process runs on each entry node, manages all CRIs
of that entry node, and serves as a gateway between the CRIs and the higher control
software layers, collectively referred to as EDC, that typically execute on other nodes in
the DAQ network. The key architectural features are:

• the Wishbone control bus is accessed via the CRI controls interface (cf. Sec. 5.3.2)
with PCIe PIOs.

• the DCA is multi-threaded and can handle multiple CRIs as well as CRIs with
multiple Wishbone buses (e. g.: CRI1 has a Wishbone bus for each SLR). Each
Wishbone bus has a dedicated worker thread.

• the DCA exports a remote procedure call (RPC) interface for the higher layers of
the controls stack.

• RPC error handling is done via exception forwarding.

• the DCA provides a high-level functional interface, all register transactions that
must be atomic are encapsulated in a method.

• for debug purposes, low-level direct register access is provided too.

• the DCA can serve multiple clients simultaneously, allowing control and monitoring
functions to be implemented as separate processes.

The DCA is implemented in C++ while the higher controls layers are currently implemented
in Python. The RPC interface is implemented with MsgPack [67] over ZeroMQ [52].

The DCA software is structured in a framework part common to all readout chains and
an easily extendible set of software modules, which represent devices. The framework
part provides all required common services like RPC handling, thread and object cre-
ation, as well as logging and monitoring interfaces. The device classes describe either
FPGA-internal functional units, like a VHDL entity, or FPGA-external entities, which
are accessed over communication links, such as an I2C device on the CRI board, a GBTx
reached over a GBT link, or a readout ASIC reached over an e-link which is transported
over a GBT link (see Fig. 5.5). All device classes inherit a large set of common functionality
from a base class.
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Figure 5.4: The CRI has two control realms: the FLIM configuration bus (cf. Sec. 4.3.3)
controlled by the FLES data publishing server (cf. Sec. 4.3.7), and the Wish-
bone control bus for all other register resources controlled by the DCA.

All setup and configuration of a DCA process is done via RPCs, the DCA does not
read configuration files. After DCA startup, only a service object is available to scan
the system and search for CRI devices. Control software requests a CRI device scan via
RPC and creates a worker thread and a device object for each detected CRI and each
Wishbone bus. In the next step, the control software inspects the Zeropage (cf. Sec. 5.3.2)
of each Wishbone bus. The “BuildInfo” is used to determine all further information about
the specific FPGA design, usually via the artifacts management of the build flow (cf.
Sec. 5.3.5). A key element is the AGWB-generated system description (cf. Sec. 5.3.2) with
a complete description of the Wishbone register structure. Based on this information,
the control software finally creates all device objects for FPGA-internal entity instances,
and with further information from configuration management, also the device objects for
FPGA-external components.

All device objects have a unique identifier and are associated with the worker thread of
the corresponding Wishbone bus. For FPGA-internal objects, this is the bus to which the
entity instance is connected. FPGA-external objects are always reached via a communi-
cation bridge (see Fig. 5.5), such as an I2C controller or a GBT link controller, which is an
FPGA-internal object. FPGA-external objects are therefore associated with the worker
thread of the communication bridge.

RPC requests sent to the DCA contain the device class name, the unique identifier of the
device object, the method name, and the MsgPack’ed argument list. The first stage of
RPC processing in the DCA, the corresponding C++ object and method are determined
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Figure 5.5: The DCA class/object model reflects the structure of FPGA internal modules,
including communication bridges, and FPGA external components that are
reached via communication links, such as a readout ASIC reached over an e-
link transported over a GBT link. In the latter case, the connection to an
SMX or SPADIC is shown, where the HCTSP controller in the CRI is handled
by a corresponding bridge abstraction layer (BAL) in the software stack.

and the request is forwarded to the proper worker thread for execution. This allows the
Wishbone buses to operate independently and concurrently, but guarantees that RPCs for
a given bus are handled sequentially, and thus the atomicity of transactions on a given
hardware object.

The DCA supports queued and scheduled execution of device object methods in addition
to pure RPC-driven processing. The event loop of each worker thread interleaves these
activities with RPC processing so overall atomicity is maintained. Such activities are
usually started via an RPC request and can be used, for example, to implement periodic
monitoring tasks. To further support this use case, the DCA framework includes an
abstract interface for time series databases and currently concrete sink implementations
for InfluxDB V1 and V2.

Last but not least, the DCA contains the first-level handler for the CRI alarm system (cf.
Sec. 5.3.2). In simple cases, the alarm handling can be performed locally by the DCA
with the mechanisms described in the previous paragraph. If the handling is complex or
requires a large set of parameter values, the DCA will forward the alarm to a registered
handler in the control system.

In any case, all anomalies and significant events are logged by the DCA. The DCA frame-
work includes an abstract logger interface and currently concrete sink implementations
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Figure 5.6: The CBM building hosting the experimental area (below ground level) and the
server room.

for rsyslog and InfluxDB V1 and V2. The logger messages are structured and have a
detailed set of keys, including the object identifier and a message id, for easy analysis and
aggregation.

5.5 Physical connections and layout

In most cases, the data produced by the detector front-end electronics in the experiment
cave (level E10 of the CBM building) is aggregated by GBTx data concentrator ASICs
and sent over optical links to the FLES entry nodes in the server room located on top
of the experiment cave (in level E40 of the CBM building, room E40.017). These links
run at 4.8 Gbit/s, use OM4 multi-mode fibers and are terminated by CRI2 or CRI1 PCIe
cards15 in the entry nodes. After suitable preprocessing, the data is sent from the entry
nodes in the CBM building to the worker nodes in the GSI Green IT Cube. The overall
geometry and concept is visualized in Figure 5.6.

From a readout perspective, the detector data originates from the optical transceivers
installed in the vicinity of the detector electronics. The optical links from the cave (E10)
to the server room (E40.017) are subdivided into the following segments: on-detector
cabling, flexible patch connection, optical backbone from the cave, and patch connections
in the server room.

On-detector cabling The connections from the on-detector data sources to an MTP
patch panel are performed with LC-to-MTP-24 fan-in cables. For the BMON, MVD and
STS subsystems these MTP cave patch panels are located on the left and right side of the
15One of the smaller detector systems might use CRI1 boards (cf. Sec. 5.2.2), which can be easily accom-
modated with the described connection concept.
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Figure 5.7: Sketch of the location of optical patch panels in the cave. Detector systems
located inside the dipole will interface to patch panels located on both sides
of the dipole magnet (1). All other subsystems will connect to the optical
backbone in a rack located below the upstream platform (2).

dipole magnet (Pos. 1 in Fig. 5.7). For the RICH, MUCH, TRD, TOF and PSD subsys-
tems, which can be individually displaced, the MTP subsystem patch panel is located at
the base of the respective subsystem support structure.

Flexible patch connection The movable subsystems (RICH, MUCH, TRD, TOF and
PSD) are interfaced with MTP-24 patch connections from their MTP patch panel on the
support structure to a dedicated MTP cave patch rack, located below the upstream plat-
form (Pos. 2 in Fig. 5.7). These connections will be flexed during repositioning operation
the detectors, and are therefore replaceable.

Optical backbone from the cave A set of high-density (6 × 24 fiber) trunk cables is
installed from the location of the fixed patch panels (Pos. 1 and 2 in Fig. 5.7) in the cave
to the server room, providing MTP-24 interconnections.

Readout patch connections in the server room In the server room, the MTP backbone
originating from E10 will end in MTP patch panels distributed across the racks. The
MTP-24 fiber connections match the interface of the CRI2 cards. Short MTP-24 patch
connections will be performed between the termination of the MTP backbone in the rack
patch panels and the MTP couplers on the CRI2 boards.

Optical connections summary The optical connection from the detectors to the E10
patch panels, depicted as Positions 1 and 2 in Figure 5.7, is considered part of the respective
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subsystem project. The trunk cables from E10 to E40 as well as the cables from the CBM
building to the Green IT Cube are considered common infrastructure. They ensure a
uniform system that is centrally planned and installed. The fiber cabling in the CBM
building, based on 144-fiber cables which are summarized in Section 5.2.4, requires 120
MPO/MTP trunk cables (100 m OM4, incl. 10% spares). Optical cables of this type have
been successfully used in the mCBM setup.
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Timing and Fast Control System

6.1 Overall concept and requirements

The Timing and Fast Control (TFC) system serves as the central clock and time mas-
ter for the CBM readout tree. It distributes a common clock and a common time to
all CRIs (cf. Sec. 2.2.4). In addition, the TFC provides a fast control path that allows
sending congestion status information on the TFC uplinks (CRIs to TFC Master) and the
distribution of commands for throttling and other system-wide state control in the TFC
downlink direction.

The overall design goal of the CBM timing system is to ensure that after a reset of an
individual link or component, or even upon a full system restart, the time difference
between any pair of time counters in the system (TFC, CRIs, and FEE) is the same
as before. This guarantees stability of the time differences between hits over partial or
full system initialization. This is sufficient in CBM because the accelerator delivers a
continuous beam. In LHC experiments, the front-end electronics often requires a precise
data sampling phase relative to the bunch crossing and the orbit structure defines an
observable absolute time structure. In CBM, no precise clock alignment is required at
the FEE level. Residual offsets of the time counters are absorbed in the time calibration,
which converts the FEE-determined timestamps to physical times of the hit. Only the
reproducibility of all relative timings is essential. The required precision of the relative
alignment at FEE level (before calibration) is determined by the FLES data model (cf.
Sec. 4.2). The CRI packs hits into microslices based on the hit timestamps, and later
stages build TSCs with one, or optionally multiple, microslices overlap (cf. Sec. 4.2.2 and
Fig. 4.4). The microslice overlap has to accommodate all timestamp uncertainties (cf.
Sec. 4.2.4), and thereby sets the scale of required alignment accuracy of local FEE time
counters.

The required timing stability1 is determined by the CBM detector properties. The TOF
system aims at a system resolution of 80 ps. TOF uses a dedicated on-detector clock
distribution (cf. Sec. B.4.1 and Fig. B.8) that is driven via a single dedicated GBT link.

1the timing stability is determined by the reproducibility of relative times after link resets and the time
drift caused by thermal and other environmental factors. Not to be confused with clock jitter.
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Figure 6.1: Topology of the TFC network

Therefore, the time-of-flight resolution depends only on the stability of the TOF inter-
nal clock distribution2. The RICH detector uses MAPMTs with a transit time jitter of
350 ps FWHM, and the timing information is used in background rejection cuts with typ-
ically ±5σ width. All other CBM detectors have time resolutions of a few ns at best. The
stability requirement is therefore set by the RICH detector and taken as 200 ps.

6.2 Implementation

The TFC system implementation is based on GBT links between FPGAs, with FPGA
cores on both ends of the links. The cores provide communication with deterministic
latency in the downlink direction, which is essential for time distribution, and a very
low latency data path in the uplink direction for fast congestion status collection. The
receiving CRI recovers the clock from the TFC downlink bitstream and, after appropriate
jitter cleaning (cf. Sec. 5.2.1), uses it as the system clock as well as the reference clock for
all GBT links it provides.

The expected number of about 200 CRI boards (cf. Sec. 5.2.4) cannot be controlled by
a single master unit via direct point-to-point links. Therefore, the TFC system uses a
scalable hierarchical multi-level topology as shown in Figure 6.1. This topology contains
three node classes:

Master: connects to an external frequency and time reference, generates the 40 MHz mas-
ter clock and has the master time counter, and distributes clock and time information

2This clock distribution covers all GET4-based systems and therefore includes T0.

114



6.3 Clock forwarding and time synchronization concept

Si5345
PLL

GTH GTH GTH

REFCLKREFCLKRXOUTCLK RXOUTCLK

TXOUTCLK TXOUTCLK

RXUSRCLK

TXUSRCLKTXUSRCLK

RXUSRCLK RXUSRCLK

TXUSRCLK

TXOUTCLK

RXOUTCLK REFCLK

Sw
itc

h 
fa

br
ic

GTH

REFCLK RXOUTCLK

RXUSRCLK

TXUSRCLK

TXOUTCLK

Si5345
PLLSi5345 PLL

Master Submaster Endpoint

M
as

te
r-s

id
e


us
er

 lo
gi

c

En
dp

oi
nt

-s
id

e

us

er
 lo

gi
c

Figure 6.2: Clock cascading scheme

to the downlinks. It collects status information from all CRI boards, processes it,
and issues data throttling and other fast control commands on the downlinks.

Submaster: guarantees the scalability of the system. It is responsible for forwarding the
clock as well as timing information and fast control commands with deterministic
latency in the downlink direction from the incoming Master link to the outgoing End-
point links. In addition, it receives status information from many incoming uplinks
from Endpoints, then aggregates and forwards this over a single uplink connection
towards the single TFC Master.

Endpoint: is a CRI, receives the time information, executes fast control commands re-
ceived from the Master, and sends congestion information towards the Master. For
Endpoint integration and states see Section 5.3.3.

Because the hardware requirements for the TFC Submaster nodes are very similar to the
CRI hardware requirements (cf. Sec. 5.2.1), it is planned to use the same boards, CRI1 or
CRI2, for the CRI role and the TFC Master and Submaster roles.

6.3 Clock forwarding and time synchronization concept

System clock and time is represented in the TFC Master, Submaster and the Endpoint by
a 40 MHz clock signal and a 64-bit time counter that increments with the 40 MHz clock.

The TFC Master node is connected to an external time and frequency normal, such as the
10 MHz and PPS outputs of a time provider, and uses a zero-delay PLL to generate the
40 MHz system clock as well as the reference clocks to operate the optical transceivers. At
the start of the TFC Master, the time counter is initialized such that it holds TAI time
measured in units of 25 ns relative to the Unix epoch time of 00:00:00 UTC on 1 January
1970. This time representation is monotonous, unambiguous and convenient. The time
intervals of the microslices created in the CRI are expressed in TAI time, as are the TSC
time intervals, so consistency checks can be easily performed in subsequent software layers
(cf. Sec. 4.2.5).
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Submaster and Endpoint nodes use the recovered clock from the incoming link as reference
for a local PLL, which serves as jitter cleaner and generates the local system clock as well
as the reference clocks to operate the optical transceivers (cf. Sec. 5.2.1 for CRI hardware
details). In the CRI1 board a SiLab Si5345 is used. See Figure 6.2 for the overall concept
and Figure 5.3 for the CRI1 clock routing. The same process is repeated finally for each
GBT link in the GBTx, where a VCXO-based PLL serves as jitter cleaner.

The synchronization of local time counters throughout the whole system relies on the
forwarding of messages with deterministic latency (DLMs). On the TFC downlinks this
deterministic latency is achieved with suitably configured GBT-FPGA cores (see Sec. 5.3.4
for further detail). The GBT links provide a deterministic latency path from the CRI to the
e-links which control the FEE ASICs. This is used to align the local time counters in the
FEE. The HCTSP protocol used in the SMX and SPADIC ASICs is one concrete example
(cf. Sec. B.1.4). At this stage, it is also possible to introduce time offsets to compensate
for optical link delay differences or analog and digital processing delay differences in the
front-end electronics.

The TFC system currently under development does not compensate for timing drifts,
e. g., from thermal drifts of electronics or optical fiber propagation delays. It is under
investigation to add such compensation for the TFC links as well as for GBT links for
critical detector systems. A natural option is to use TCLink [68] cores. This core was
developed in the context of the lpGBT project [69] and integrates easily with the lpGBT-
FPGA cores [70]. How it can be integrated with GBT-FPGA cores is under study.

6.4 Fast control

6.4.1 Background

The CBM self-triggered front-end electronics generate continuous streams of hit data. The
readout chain is essentially a series of FIFO buffers, communication paths with fixed or
limited bandwidth, and aggregation stages. The first layers of FIFO buffers are located in
the FEE ASICs, others along the CRI data processing path.

When the DAQ system is operated near the throughput limit, the FIFO buffers will fill
up. At some point, data will be lost because a FIFO is full. FIFO overflow situations
are monitored and recorded, often in the form of high-priority messages, so that later
analysis stages can discard time ranges with incomplete data to protect against incorrect
reconstruction. But without further precautions, this data loss will be random across the
system and lead to the collection of incomplete event information. Already a small fraction
of random data losses can render the entire data useless for physics analysis. The goal
of the fast control is to provide mechanisms to synchronize the losses in case of system
overload such that time ranges are coherently discarded and the data send to FLES is
mostly complete event information.
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The sensitivity of CBM depends on how much of the DAQ bandwidth can be used prac-
tically without degrading the data quality. A key limiting factor is the beam fluctuation
seen in synchrotrons with slow extraction [71]. Practical experience with SIS18 beams
from the HADES experiment shows that it can be substantial and on a 100 µs time scale
(see Figure 5 of [72]). The specification for SIS100 beams to CBM and HADES is to keep
intensity fluctuations (peak to average) below a factor of two [14]. The fast control part
of the TFC provides mechanisms to ensure stable operation at high beam intensities even
when the beam fluctuation requirements are not met.

The effect of intensity fluctuations could be mitigated with larger FIFOs or increased
uplink bandwidth. However, there are not only financial but also technical limits. Es-
pecially in the very dense STS setup, space and power constraints are major limitations
and allow only moderate bandwidth reserves. Due to these conditions, the SMX ASIC
used in the STS was equipped with detailed FIFO monitoring and with data throttling
controls [73]. The SMX can send FIFO-full alert messages and supports OFF/ON style
throttling3 as well as a FIFO-clear mechanism. An initial, preliminary study has shown
that these mechanisms can be used to improve high-load performance [74].

6.4.2 Implementation

The task of the fast control part of the TFC is to

• collect congestion information
• generate and distribute throttling commands
• disseminate system-wide synchronous state changes

The data transport between TFC Endpoints and the Master is done via GBT links, as
outlined in Section 6.2. The uplink frames are fully available for fast control, the downlink
frame is structured into fields for time distribution and fast control.

The protocol and interface details are still under development, so only brief considerations
for a design option will be given here.

This design approach starts with a classification of congestion sources. For a given CRI
design, one will have a small number of source types, like FIFO fill state in the entry
and exit stage of the CRI data processing chain, or FIFO-full states received from the
connected readout ASICs. For each source type, the number of objects is known. This
leads to a very simple but generic concept

• for each source type, the CRI aggregates the status of the congestion objects into a
number with a given width. For sources that provide only binary information, this
can be easily implemented as the population count of a bit vector. If the number
of objects is greater than the field width, the value saturates. Other algorithms are

3This mechanism of the SMX discards hits before the local channel FIFO. Not to be confused with the
well-known XOFF/XON flow control that acts on data transport channels.
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conceivable if more information is available for a source type, such as a FIFO fill
level.

• the TFC uplink frame is divided into fields, each containing such a source type value.

• the Submaster aggregates information received from the Endpoints by adding the
values for the same type. The simplest method is a saturating addition, but more
sophisticated functions are possible.

• the Master performs the same aggregation for the information received from the
Submasters. The throttling decision is based on the aggregated values, simplest
being a value over a programmable threshold logic4.

• the throttling state is broadcast from Master to all Endpoints. In case the final
target is a FEE ASIC, e. g., the SMX, this is forwarded by the CRI.

4Such a threshold logic allows to tolerate a small amount of congestion and can be used to optimize
overall performance.
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Evaluation by mCBM

A CBM full-system test-setup named mCBM@SIS18 (short “mCBM”) was set up 2017
and 2018 at the GSI experimental area Cave D (HTD)1 [28]. It has been taking SIS18
beam since 2019 within the FAIR phase-0 program of GSI /FAIR. The primary aim of the
mCBM experiment is to commission and optimize the CBM detector prototypes or pre-
series productions, the readout system, and FLES components under realistic experiment
conditions up to the top CBM interaction rates of 10 MHz. In particular, it enables the
verification of the concepts presented in this TDR. The current setup covers all stages of
the foreseen online systems:

• The readout tree between the CRIs and the detector electronics.

• The FLES entry stage with entry nodes and CRIs.

• A fast timeslice building network and a long-haul connection between the experiment
and the Green IT Cube.2

• A small FLES compute cluster.

• A prototype connection to the current GSI compute farm.

• A prototype of the TFC system including the connectivity to the GSI’s WhiteRabbit
time distribution network.

• The needed service and infrastructure nodes as well as the foreseen experiment con-
trol networks.

The CRI1 DAQ hardware and corresponding first FPGA design and software versions
were successfully tested for the first time during the 16O beam block in July 2021. O+Ni
collisions at 2.0A GeV kinetic bombarding energy were measured at a maximum collision
rate of about 1 MHz as a first commissioning run (#1588). The following chapter presents
further details of the experiment and the results of performed tests and recent beam
times.

1Located at the beam entrance of the experimental area Cave C (HTC), hosting the nuclear structure
experiment R3B.

2While this connection is only 300 m for mCBM it uses the same technology as foreseen for the final
connection.
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7.1 mCBM experimental setup

As depicted in Figure 7.1, the mCBM experiment is positioned downstream of a solid
target under a polar angle of about 25° with respect to the primary beam towards a beam
dump, which is located 7 m downstream at the south end of the experimental area. mCBM
does not comprise of a magnetic field, and therefore measures charged particles produced
in the nucleus-nucleus collisions traversing with straight trajectories through the detector
stations. The mCBM setup includes detector stations of all CBM detector subsystems. A
photograph of the present setup is shown in Figure 7.2.

As depicted in the GEANT geometry in Figure 7.1 as well as being shown in the photo-
graph of Figure 7.2, the following CBM detector subsystems are installed in the mCBM
experiment3:

• the fast and segmented diamond counter for time-zero (T0) determination positioned
20 cm upstream of the target is used during the high-rate tests and is read out by
the GET4 front end with one CRI1,

• the Silicon Tracking System (STS) subsystem, which is equipped with 2 stations,
5 STS ladders in total, is read out by the SMX front end with one CRI1,

• the Muon Chamber (MUCH) subsystem, which consists of 2 GEM modules placed
between the STS and TRD subsystems as well as an RPC module mounted down-
stream of the TOF detector, is read out by the SMX front end with two CRI1,

• the Transition Radiation Detector (TRD) subsystem, comprising of one detector
module for the inner TRD region (TRD-2D), is read out by the FASP front end
with one CRI1, and is complemented with two large detector modules for the outer
TRD region (TRD-1D), which is read out by the SPADIC front end with one CRI1,

• the Time-of-Flight (TOF) subsystem with RPC modules grouped into two stacks, is
read out by the GET4 front end with one CRI1,

• and the Ring Imaging Cherenkov (RICH) subsystem using two aerogel radiators,
placed directly behind the TOF detector, and delivers a second measurement of the
particle velocity in a selected acceptance window, is read out by the DiRICH front
end with one CRI1.

7.2 Data acquisition hardware setup

The CBM DAQ and data transport system as it is used for the mCBM experiment is
sketched in Fig. 7.3. As of 2022, the mCBM cave was interfaced to the DAQ container
by means of 3 trunk cables, each containing 144 multi-mode optical fibers. The entry
stage of the mCBM FLES consisted of 6 entry nodes hosting a total 14 CRI1 cards (see

3the PSD detector participated in 2020 and 2021. A single module was installed at an angle of 5° relative
to the beam axis.
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Figure 7.1: The mCBM GEANT geometry as of May/June 2022: the beam enters from
the right propagating along the beampipe (blue). The detector systems are
positioned under a polar angle of about 25◦ with respect to the primary beam.
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Figure 7.2: Photograph of the mCBM setup as of March 2022, the beam enters from the
right.
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Figure 7.3: Sketch of the mCBM DAQ and data transport system.

titlepage of this document), synchronized with one TFC-Master node. Figure 7.4 shows
the mCBM entry node rack as of September 2022, which serves as a CBM prototype
installation. Describing the installed units from top to bottom, a WhiteRabbit Time
Provider (2 HU) receives timing information from the GSI accelerator facility and forwards
this information to the TFC-Master. The TFC-Master and a backup system are hosted
in 2 individual (2 HU) nodes. Furthermore, an InfiniBand HDR switch (1 HU) is used for
the interconnection of the entry nodes with the processing nodes in the Green IT Cube.
6 entry nodes (4 HU) are each populated with up to 3 CRI1 cards, which terminate the
optical connections originating from the mCBM cave.

The long distance connection to the Green IT Cube is realized by a 300 m long trunk
cable holding 144 single-mode optical fibers. A mix of 4 EDR and 2 HDR InfiniBand links
offering 800 Gbit/s total bandwidth is used to forward the timeslice components from the
entry nodes to the processing nodes in the Green IT Cube, where additional 4 processing
nodes and the FLES master server are located. The processing nodes are equipped with
a second InfiniBand interface allowing them to forward the data to the GSI Virgo cluster
for further analysis and storage. The size of the readout system at mCBM is about 5% of
the final setup at SIS100.

7.3 Data path software

The mCBM setup allows to test the full data path from the detectors, via the CRI up to
the interface to the online processing software. The data flow in the FLES part is governed
by a collection of software components named Flesnet. Microslices produced by the CRI
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Figure 7.4: Photograph of the mCBM entry node rack as of September 2022, serving as a
prototype installation for CBM.
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hardware design are transferred via DMA to the main memory of the entry node and
published in a shared memory segment. Subsequently, Flesnet performs timeslice building
and delivers timeslices to the processing nodes. The Flesnet software then publishes the
timeslices to one or more online processing tasks and, in the current version, simultaneously
stores them to local disks in the form of timeslice archive (TSA) files.

A control system for the FLES operation coherently manages the various Flesnet processes
on the cluster and allows us to configure, start, and stop individual data-taking runs.
While greater flexibility may be desirable for the operation at full CBM size, the present
demonstrator software components already cover the whole data path and provide the full
functionality for productive data-taking at a high level of efficiency. The Flesnet software
components collect operational metrics at several key points in the data chain. These
metrics are collected and analyzed on a central monitoring server, allowing to verify the
operation of the system.

7.4 Data path performance

Figure 7.5 shows the measured input data rates per input channel and aggregated values
per subsystem. Data shown here as an example of data flow and buffer utilization of a
mCBM run originate from run number 2448 on June 16, 2022, taken in Au+Au collisions at
1.23A GeV kinetic projectile energy with an average collision rate of 300 - 400 kHz. Data
were received by Flesnet through CRI cards in 6 entry nodes with a total of 28 FLIM
channels active. Seven subsystems were participating in this run: STS, TRD +TRD-2D,
TOF (named RPC in the figures), MUCH, RICH, and T0. As expected, the beam spill
profile of the SIS18 facility is visible in the data rates of all subsystems except T04. The
STS system provides the largest contribution of approximately 50 % of the overall data
volume. The total in-spill input data rate in this run reaches 5 GB/s. The average data
rate per input channel varies significantly between different channels because the mCBM
hardware setup was not optimized for balanced rates. At the data rates observed here,
however, Flesnet can handle these variations successfully. In the full CBM experiment,
special care will be taken to balance the average data rates across input channels.

The top plot in Figure 7.6 shows the input data rate on the timeslice build nodes. During
timeslice building, the experiment raw data are aggregated from all inputs and distributed
fairly to the three active build nodes over the InfiniBand network. In this setup, each build
node stores the full timeslices on several internal disks. The maximum aggregate write
throughput to these disks is below the maximum in-spill data rate of 2 GB/s, causing
the timeslice buffer utilization (middle and bottom plots in Figure 7.6) to rise during
spills. The plots illustrate how the spill breaks are then used to store the remaining data,
smoothing the overall data rate successfully across spills. Even though the spill variation
is expected to be less pronounced in SIS100, smoothing the data rate is an essential
feature. Overall, data were recorded to local storage at an average sustained data rate of
2.4 GB/s.

4Due to a misaligned beam, mainly missing the T0 diamond counter.
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Data rate per subsystem
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Figure 7.5: Incoming microslice data rates for mCBM run number 2448, taken in Au+Au
collisions at 1.23A GeV kinetic projectile energy with an average collision rate
of 300 - 400 kHz, June 2022.
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Data rate per build node
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Figure 7.6: Timeslice building data rates and buffer utilization for mCBM run number
2448, taken in Au+Au collisions at 1.23A GeV kinetic projectile energy with
an average collision rate of 300 - 400 kHz, June 2022.
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7.5 Synchronization

Figure 7.7: Stable timing: time difference measured by the detector subsystems STS, TRD,
PSD, and RICH with respect to the TOF system (run 1588, O+Ni at 2.0A GeV,
July 2021)

As a key requirement of a self-triggered streaming DAQ system, the CRI branches of all
detector subsystems were stably synchronized over the full run period. Hence, a stable
timing of the front-end electronics of all detector subsystems could be observed within
the expected time resolution as it is visible in Figure 7.7. Here, all time differences are
displayed within the given time window measured by the STS, TRD, PSD and RICH
detector subsystems with respect to the time of the TOF system (time diff = tsubsystem −
tTOF). The measured time results from time stamps assigned to the raw hit messages,
which were converted into digis with a common time representation during the unpacking
stage of the data analysis. Individual time offsets of the subsystems were corrected during
the unpacking stage; no detailed time calibration procedures were applied. As observed,
the subsystem time offsets remain constant during the run as well as between runs.

7.6 Data analysis results

A preliminary CBM data analysis chain is being developed. As a first step, the raw data
messages stored in timeslice archive (TSA) files are being unpacked by a unified unpacking
scheme separating the framework from the algorithmic part. Accordingly, the subsystem-
specific unpacking converts the raw data messages into digi classes within this common
architecture, applying additionally individual subsystem time offset corrections as well
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Figure 7.8: Correlation between spatial coordinates (x) of both STS stations STS 0 and
STS 1 (left figure) and between both STS stations and TOF (right figure),
run 1588, O+Ni at 2.0A GeV, July 2021

Figure 7.9: Vertex reconstruction based on tracks formed from hits (in a row of stacked
modules) of the TOF wall and STS stations, run 1588, O+Ni at 2.0A GeV,
July 2021

as involving the detector channel mapping and (partially) first calibration steps of the
corresponding detector subsystem.

After data unpacking, a first, simplified event building is performed based on a time
cluster search within a time window defined by the timing response of a reference detector
system. The digi times of the reference detector are then taken as seeds for setting the
time windows of the detector systems by adapting the window width according to the
corresponding timing response. The identified event candidates are further filtered by digi-
based trigger conditions cutting, e. g., on digi multiplicities of selected detector stations
or their combinations. For mCBM data taken during the commissioning run O+Ni at
2.0A GeV in July 2021, the trigger condition of the event candidate selection requests
NTOF digi ≥ 6. Detector hits are then reconstructed by the subsystem-specific hit finding
algorithms applied to the selected digis.

Supplementary to the correlation in time (Figure 7.7), correlations of spatial coordinates
are presented in Figure 7.8, exemplary between both STS stations STS 0 and STS 1
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Figure 7.10: Sufficient stability of the readout system: the TOF RPC time resolution
(left figure) for the system as well as RPC single counters as a function of
the charged particle flux at high detection efficiencies (right figure), taken in
O+Ni collisions at 2.0A GeV with 108 - 1010 beam particles per second, July
2021.

(left figure) and between STS stations and TOF modules (right figure). The displayed
correlations are based on tracks formed from hits in both STS stations as well as including
hits of the TOF wall. The resulting vertex reconstruction is shown in Figure 7.9. The
dimension of the reconstructed vertex matches reasonably with the beam spot measured
on the scintillation target of the beam diagnostics station, upstream in front of the mCBM
target chamber.

During the mCBM campaigns, high-rate studies could be performed in nucleus-nucleus
collisions with collision rates up to 10 MHz benefiting substantially from the highest avail-
able beam intensities at GSI SIS18. As an example, Figure 7.10 shows the observed time
resolution of the TOF RPC modules as a function of the measured charged particle flux
(left figures) at high detection efficiencies (right figure). The readout system provides
sufficient stability to achieve 40 ps timing resolution. At the highest counting rates of
about 25 kHz cm−2 the observed TOF time resolution reduces to the measured 70 ps for
the system and 52 ps for RPC single counters at moderate efficiency degradation, well in
line with the requirements on the CBM TOF system.

To further validate the readout and data processing concept of CBM, Λ production yields
in nucleus-nucleus collisions are measured with mCBM as a benchmark observable, which
will allow comparison with published data by the FOPI and HADES experiment. Hence,
the first benchmark run has been measured on May 26, 2022, taking Ni+Ni collisions at
1.93A GeV kinetic projectile energy. With a total run duration of 5 h 55min, approximately
5× 109 collisions were collected on 30 TB timeslice archive (TSA) files storing the raw data
messages. The second benchmark run was taken on June 16 – 18, 2022, measuring Au+Au
collisions at 1.23A GeV with a total run duration of 34 h 33min collecting approximately
2× 1010 collisions on 180 TB timeslice archive (TSA) files. A detailed data analysis of
the 2022 data has started. A first, preliminary data scan confirms a high data quality
with stable synchronization. The benchmark runs show that the readout system performs
reliably over long periods.
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Appendix A

Data Rate Considerations per Subsystem

This appendix contains additional information and remarks concerning the event sizes and
data rates for some of the individual detector subsystems. This information is intended
as additional background to the summarized data in Chapter 3.

A.1 BMON

The BMON subsystem consists of two components, T0 and HALO. Both systems have
only a negligible influence on the overall data rates.

A.2 MVD

From the simulation, we assume 500 hits per minimum-bias event from the actual collision
event, plus 3000 hits caused by delta electrons from 100 beam particles. On top of this,
there is a considerable contribution of dark rate and frame overhead data. The expected
data rates add up to 3.5 GByte/s of dark rate and noise, 1 GByte/s due to delta electrons
and about 0.5 GByte/s of actual hit data emanating from the particle interactions. The
nature of the sensor that does not provide information about signal height does not allow
for a significant reduction of data rate from noise and delta electrons in the preprocessing
stage [75].

A.3 STS

Data rates for the STS were determined from detector simulations of Au+Au collisions
at 12AGeV/c using the geometry v19a which implements all major parts of the STS
support structure. Event sizes for the STS vary slightly in the different setups because
of shadowing from delta electrons by the MVD detector and backward scattered particles
from the MUCH absorbers, when these systems are present in the setup. As these effects
have only a small influence on the total data rate, they have been neglected here for
simplicity and the rates for the MUON setup are used, which is the worst case for the STS
overall data rates.
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Figure A.1: STS hit and data rate distributions for ROB and CRI

The simulations provide (a) particle rates on the sensor from Au+Au interactions, (b)
delta electron rates from beam-target interaction. Here a delta electron contribution from
100 beam particles for each interaction is assumed for a 1 % interaction target. (c) noise
rates, which are given per time; numbers are calculated from the known noise performance
of STS modules. At the moment the same conservative noise level is assumed for each
module.

For the present simulations, a hit generation threshold of 4000 electrons was used, which
corresponds to a noise threshold of 4σ ENC. The overall weight of the different contri-
butions to the total rate is 89.5 % from interactions, 8 % from delta electrons (with large
local variations) and 2.5 % from noise. Simulated particle and delta electron rates given
in occurrences per sensor area can be translated into hit rates for each SMX ASIC in the
STS system.

To derive data rates from the hit rates, additional contributions must be added for TS_MSB
frames which are generated in addition to the hit frames and for the 8b/10b encoding of all
uplink frames. TS_MSB frames are generated for each 800 ns time window with hits present
in a given serial readout link. The TS_MSB rate cannot be calculated in a straightforward
way, since it depends on the temporal distribution of the hits over the 800 ns time periods;
for ASICs with multiple uplinks it also depends in the distribution of all hits over the
available uplinks. Therefore all estimates of required ASIC readout bandwidth were done
not based on the full uplink bandwidth of 10.67 MFrame/s, but based on the guaranteed
hit bandwidth of 9.4 MHit/s (in case of the maximum TS_MSB rate of 1.25 M_TS_MSB/s).
The maximum TS_MSB rate is also used for the estimates of total data rates. Hit frames
and TS_MSB frames consist of 3 byte with 8b/10b encoding; thus 30 bit per frame are
transmitted from the front-end ASICs to the CRI level. The distribution of hits and uplink

132



A.4 RICH

avg. int. rate 107 106 0 1/s
avg. message count per event 425 425 –
avg. message rate 4.25× 109 4.25× 108 3.5× 106 1/s
safety overhead 50 50 – %
message rate incl. 50 % safety 6.4× 109 6.4× 108 3.5× 106 1/s
message size 12 12 12 B
raw data rate 7.7× 1010 7.7× 109 4.2× 107 B/s
TrbNet readout trigger rate 100 20 10 kHz
absolute TrbNet overhead 7.5× 109 1.5× 109 7.5× 108 B/s
relative TrbNet overhead ∼10 ∼20 ∞ %
total data rate to CRI 1× 1011 1× 1010 8× 108 B/s
DiRICH backplane count ≈200 ≈200 ≈200
fiber count (DiRICH to CRI) ≤376 200 200
link speed (DiRICH to CRI) ≤4.8 2.4 2.4 Gbit/s
bit rate to CRI (8/10b) 1× 1012 1× 1011 8× 109 bit/s
CRI count 8 ≥6 ≥6
fiber links per CRI ≤47 34 34
data rate per CRI 1.25× 1010 1.7× 109 1.3× 108 B/s

Table A.1: Expected hit and data rates for the CBM RICH detector assuming Au+Au
collisions at pbeam = 12AGeV/c and different interaction rate scenarios.

data for all ROBs and CRI (for the case of 12 ROB per CRI) are shown in Figure A.1.

For the data transfer out of the CRI, the number of hits is preserved (no preprocessing or
data rejection). Each hit is expanded in its address and timestamp (to a 3.2 µs interval),
resulting in 4 Byte per hit message. A TS_MSB expansion similar to the front-end protocol is
done with one TS_MSB for each 3.2 µs bucket of a unit (Dproc) processing 14 readout links.
This will lead to a worst case TS_MSB overhead in the CRI_OUT data of 2.16 GB/s.

A.4 RICH

The numbers given in Table A.1 are based on an estimate of an average of 425 hits per
event on the RICH photon detector (as simulated for minimum bias Au+Au collisions at
pbeam = 12AGeV/c ). This average includes hits due to (simulated) background, noise,
laser pulser, and dark rate. The latter can be regarded as negligible compared to the
simulated average hits per event at the full interaction rate. We assume an additional
50 % hits per event to account for unexpected (i. e., not yet simulated) additional hits
caused, for example, by fluorescence light in the detector, underestimated cross talk on
the MAPMTs, radiation background, or after-pulsing.

Each hit message consists of a leading and trailing edge time, plus (in most cases) an epoch
message, with a total message size of 3 · 4 B = 12 B. Epoch messages are generated per
individual channel, they are skipped if a second hit in the same channel occurs within the
same epoch (≈10 µs, >100 kHz per channel), which will be only rarely the case. Additional
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overhead is caused by the TrbNet protocol due to event headers and readout trigger
timestamps from each of the DiRICH front-end modules. This overhead scales with the
constant TrbNet readout trigger rate which can be reduced from ∼100 kHz at full rate
operation down to∼10 kHz at low rate operation to reduce the overall data rate. Currently,
we estimate this overhead to be 94 words times the number of combiner modules per
readout trigger.

The number of CRI cards is not only defined by the total data rate, but also by the number
of optical links from the detector. A minimum of 200 optical links (single link per readout
module, initially running at 2.4 Gbit/s) has to be received on the CRI side. Later, this
number might be extended to 2 optical links (with up to 4.8 Gbit/s each) on a selected
number of readout modules, employing an upgraded DiRICH combiner module (not yet
developed). This upgrade is not needed for the initial operation of the RICH at a reduced
rate (up to an interaction rate of 106/s). Proper load balancing across all CRI boards
will be achieved by optimized allocation of the individual fibers, which cover a broad load
spectrum depending on the individual readout position.

The contribution of MAPMT photon dark rate (due to thermal emission of photons) to
the overall data rate can be assumed to be very low. We estimate an average dark rate of
50/s per channel, or 3.5× 106/s for the full RICH detector. This number is considerably
larger (factor 3 to 4) than recent observations at mCBM, and has to be seen in relation
to the 4.25× 109/s total hit rate at an interaction rate of 107/s. The MAPMT dark rate
shows only a weak threshold dependence (within a reasonable range) and can thus be
regarded as constant. Other sources of additional noise were taken into account already
in the 50 % safety overhead.

A.5 TRD

There is an ongoing decision process to replace the previously planned full TRD design,
for clarity also referred to as full TRD-1D, with a proposed alternative design of a “inner
TRD-2D” plus surrounding “outer TRD-1D”. While this section refers to both variants,
the values in Table 3.1 are calculated using the default full TRD-1D, not its proposed
variant. The proposed TRD-2D variant for the inner section features a higher channel
density (factor 1.4), but instead of the time-resolved sampling approach of the TRD-1D,
it uses single measurements, which yields significantly smaller hit messages. We, therefore,
expect the variant to not cause an increase in data rate relative to the numbers presented
here.

The event sizes have been calculated based on UrQMD simulations of minimum bias
Au+Au collisions at pbeam = 12AGeV/c and GEANT3 transport through the CBM
hadron, electron, or muon (“J/psi”) setup, respectively, according to TRD geometry ver-
sion v20b. The comparison of the TRD rates in the muon setup and the electron setup
reflects the effect of the MUCH absorbers on the produced particles. The so-called “forced-
neighbor trigger” mechanics of the TRD SPADIC front end has been included explicitly
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in the message calculation, which explains part of an increase with respect to earlier es-
timates. The number of ADC samples is set to 7. The detector gain was set to 42 ADU
(MIP hit central on detector pad, channel amplitude), the differential threshold to 8 ADU.
Uncertainties from the current state of implementation of materials in the TRD structures
as well as from triggering delta electrons have been determined by variation to be about
8 %, which is included in the given numbers already. An additional 50 % is included as
a contingency factor, e. g., for simulation uncertainties (in particular: GEANT3 underes-
timates hadronic interactions), further material budget in CBM not yet considered, and
detector gain variations as far as not caught by local threshold adjustment.

The design value for sample-to-sample fluctuations of the front-end electronics connected
to the detector is better than 2 ADU (Gaussian width), such that noise triggers are ne-
glected in the dark rate estimates. Nevertheless, given the spatially extended electrical
structures of the TRD, a certain level of pick-up triggers from electric effects is expected.
As the final electrical (grounding) scheme of the TRD cannot yet be tested and character-
ized to full extent, the corresponding pick-up rate expectations have a larger uncertainty
level. We calculate here with a mean trigger rate of up to 800/s, leading to a dark data rate
of 3.2 GB/s for the full TRD, or 2.2 GB/s for the outer TRD (TRD-1D), respectively.

Epoch messages of 3 B are generated per e-link with 62.5 kHz, leading to an additional
overhead rate of 3.9 GB/s for the full TRD, or 2.7 GB/s for the outer TRD (TRD-1D)
on e-link level from readout electronics to the FPGA level. The overall dark rates on the
CRI input side, i. e., from pick-up triggers and epoch overhead, yield sums of 7.1 GB/s for
the full TRD or 4.9 GB/s for the outer TRD (TRD-1D), respectively, which corresponds,
e. g., to a fraction of dark rate from the overall TRD data rate of 4.4 % during the highest
projected interaction rates of 5× 106/s interactions at the target in case of the hadron
setup. On the FPGA level the epoch messages can be suppressed to one per microslice
stream. Currently, the number of microslice streams per CRI is not fixed. Assuming two
CROBs per microslice stream and 12 CROBs per CRI leading to six microslice streams
per CRI, the overall epoch message dark-rate (overhead rate) can be reduced to negligible
values of 72 MB/s for the full TRD and to 48 MB/s for the outer TRD.

A.6 TOF

The TOF data rates are obtained based on Dubna Cascade Model [76] simulations of
minimum bias Au+Au collisions at pbeam = 12AGeV/c and GEANT4 transport through
the CBM hadron setup. Beside the Monte Carlo particle rate, the simulation includes
several additional contributions to the total data rate. These are a cluster size of 1.3,
afterpulses contributing with a factor of 1.3, an error message rate of 1 %, a detector dark
rate of 1 s−1 cm−2, and the epoch rate of 39 062.5 Hz per microslice stream. This leads to
a total message rate of 7.1× 109/s. With a message size of 6 B, one obtains a total data
rate of 42.62 GB/s at an interaction rate of 5 MHz.

Simulation shows an even higher message rate in the electron setup compared to the
hadron setup by 8 %, caused by secondary particles produced in the RICH and TRD
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detector materials. However, the electron setup is assumed to be operated only at 100 kHz
interaction rate leading to a total data rate of 0.92 GB/s. The comparison of the TOF rates
in the muon setup reflects the effect of the MUCH absorbers on the produced particles.
It is reduced by a factor of about 4.3, which leads to a total data rate of 9.80 GB/s.

A.7 PSD

The PSD system has only a negligible influence on the overall data rates.
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Data Sources

This appendix contains detailed descriptions of the individual subsystem’s readout archi-
tecture components and specific CRI FPGA design components.

B.1 SMX-based systems: STS and MUCH

B.1.1 SMX front-end ASIC

The SMX ASIC is a 128 channel integrated circuit designed for the readout of the CBM
STS and MUCH detectors [77, 78, 79]. It comprises of an analog front-end with two-path
processing by a timing comparator and a continuous-time 5-bit analog-to-digital converter,
with a digital back-end with time pre-sorting, advanced monitoring and throttling features.
The 320 Mbit/s serial links are scalable and targeted for GBT-based data acquisition.

The data processing in two parallel branches for time and ADC information generates
self-triggered hit messages. Each channel provides an 8-hit deep FIFO storage. Hit losses
due to a filled channel FIFO or an analogue pilepup situation trigger a channel “event
missed” (EM) flag, which is added to the next hit generated in this channel. The ASIC is
typically operated with an external 160 MHz clock, the time counter and the data readout
utilize a double data rate clock of 320 MHz.

ASIC data readout is done using up to 5 differential uplinks which can be individually
enabled and are electrically compatible with the GBTx e-links at the receiving end. Hits
are read out from all non-empty channel FIFOs in a partially time-sorted sequence (using
bits 13 to 6 of timestamp) and sent via the next available enabled uplink. Sorting based
on all timestamp bits would be pointless here because the relation of physical hit time and
recorded timestamp depends on amplitude and the chronological order of the physical hit
times is not preserved.

Frame Type 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Hit 0 7-bit channel address 5-bit ADC > 0x00 TS<9:8>  Timestamp<7:0> EM 

TS_MSB 1 1 Timestamp<13:8> Timestamp<13:8> Timestamp<13:8> 4-bit CRC  

Figure B.1: SMX hit frame and TS_MSB frame structure
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In each uplink, hits are split into a TS_MSB frame with redundant 6 MSB of the time
counter and a hit frame (see Fig. B.1). The TS_MSB frame is only sent if it differs from the
TS_MSB value of the previously transmitted hit. The uplink frames are 8b/10b encoded for
DC-balancing on the AC-coupled uplinks, resulting in 30-bit frames at 320 MBit/s [80].

B.1.2 STS

The readout chain of the STS consists of front-end boards (FEB8) with 8 SMX ASICs,
connected by an electrical e-link interface to the GBTx based STS readout boards (STS-
ROB) which act as data concentrators and also incorporate the Versatile Link based optical
interface to the CRI system.

FEB8 front-end board

Each side of an STS double-sided sensor with 1024 strips is read out by one FEB8 front-end
board with 8 SMX ASICs. Each FEB8 is operated at the bias potential of the connected
sensor side and all communication signals from and to the digital back-end interface are
AC coupled. The digital back-end interface consists on the downstream side (back-end to
front-end ASICs) of a single common clock to all 8 ASICs and a common downlink for
control commands in a multi-drop architecture. The communication protocol supports
4 address bits and allows to address each ASIC on a FEB8 individually or to broadcast
commands simultaneously to all ASICs. The upstream (readout) interface consists of
a variable number of uplinks per ASIC, each with a capacity of 10.66 MFrame/s and a
minimum rate for hit frames of 9.4 MHit/s. The expected STS ASIC hit rates (cf. Sec. 3)
range up to 32 MHit/s, which can be handled by the maximum of 5 readout links per
ASIC. The available bandwidth allows introducing a safety margin in the designed readout
bandwidth of more than 50 % for almost all ASICs.

Depending on the expected hit load for a given sensor, 1, 2 or 5 e-links per ASIC are
used, resulting in three readout variants of the FEB8 board, called FEB8-1, FEB8-2 and
FEB8-5 with 1, 2 and 5 uplinks for readout per ASIC. The three readout variants will
be realized with two hardware variants of the FEB8; the FEB8-1 will use the FEB8-2
hardware implementing two e-links per ASIC on the FEB8 PCB and the same 40-pin
flexible flat cable connector. The difference will be only in the back-end connectivity on
the STS-ROB, supporting either 8 or 16 uplinks from the FEB8.

STS readout board STS-ROB

The STS readout board (STS-ROB) is a data concentrator board including the electrical-
to-optical readout interface based on the radiation-tolerant GBTx ASIC and Versatile Link
devices developed by CERN and others [31, 62]. The STS-ROB is a ROB3 type board,
meaning it carries 3 GBTx ASICs, one (“master”) connected to the bidirectional VTRx
optical transceiver for control and readout, and two (“slaves”) unidirectionally connected
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Figure B.2: STS Readout Board Block Diagram

to a VTTx twin transmitter device for readout and control responses (see Fig. B.2). It is
functionally equivalent to the CBM CROB, which is in use at mCBM for the readout of
mSTS, mMUCH and mTRD. The STS-ROB is however built in a special, elongated form
factor, which allows for placement in the densely packed STS detector.

The slave GBTx are controlled via I2C interfaces of the GBT-SCA ASIC. The GBTx
devices are operated in widebus mode (without forward error correction in the optical
uplink) at 320 Mbit/s e-link speed matching the SMX readout. With these settings, each
GBTx can provide 14 uplinks. The resulting 42 uplinks closely match the 40 uplinks as
multiples of 8 uplinks from up to 5 FEB8 boards.

On the downlink side, for connecting to a maximum of 5 FEB8 boards (FEB8-1), the
STS-ROB uses 5 of the master GBTx phase adjustable clocks configured for 160 MHz, as
well as 5 out of the 12 available 160 Mbit/s downlinks of the master GBTx. The phase
adjustable clocks are derived from the clock-data recovery of the GBTx optical downlink,
the individual clock phases and uplink input delays are determined in the front-end link
synchronization procedure which is part of the HCTSP protocol.

Connectivity from FEB8 via STS-ROB to CRI

The FEB8 variants with a different number of uplinks require flexible connectivity between
one or multiple FEB8 and an STS-ROB. Due to geometrical constraints in the mechanical
setup of the STS, FEB8 to STS-ROB connections will be done separately for each side of
the mechanical support frames (C-frame). A fixed sequence of up to 40 FEB8 with 8, 16 or
40 uplinks each is connected to a stack of STS-ROBs. A single STS-ROB will connect to
either 5 FEB8-1, 1 FEB8-5, or 2 FEB8-2 and 1 FEB8-1 using different interface cards.

The STS-ROBs from all ROB stacks in each of the 4 symmetric quadrants of the STS
detector extending over all 8 detector stations will be mapped consecutively to a sequence
of CRI. The STS-ROBs are connected to the optical backbone with LC-MTP-24 fan-ins.
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Station FEB8-1 FEB8-2 FEB8-5 STS-ROB CRI2
0 48 40 64 104 13.0
1 96 96 16 84 10.5
2 136 64 8 68 8.5
3 192 32 0 56 7.0
4 144 72 0 64 8.0
5 168 48 0 60 7.5
6 200 48 0 68 8.5
7 224 56 0 72 9.0
sum 1208 456 88 576 72

Table B.1: Quantities for the devices in the STS readout for each station. We assume
that 8x STS-ROBs connect to 1x CRI2. STS-ROBs of neighboring stations
can share the same CRI2, resulting in fractional values in the last column.

Each STS-ROB provides 1x Rx- and 3x Tx-links combined from its VTRx and VTTx
device. The MTP-24 connector carries 12x Rx and 12x Tx fibers, allowing to interface 4x
STS-ROB boards on 1x MTP-24 connector. The CRI2 will be designed with 3x MTP-24
connectors. In terms of optics 1x CRI2 can be interfaced to up to 12x STS-ROB (= 36
GBT links), 60x FEB8-1 and 480x SMX ASICs. In terms of hardware design extrapolated
from the CRI1, we assume that 8x STS-ROB (= 24 GBT links) will be connected to 1x
CRI2, see Table B.2. Since STS-ROBs can be connected from subsequent neighboring
ROB stacks (also on different half units) to a single LC-MTP-24 fan-in, they can be
efficiently connected to the CRI up to the maximum number of supported STS-ROBs in
hardware design. An inefficiency in the ROB-CRI mapping may maximally occur in one
single CRI per quadrant.

The readout tree of a single CRI consists of a mix of FEB8-1, FEB8-2 and for the first
three stations also FEB8-5 boards. Device counts for each station and the full STS are
shown in Table B.1. Based on these we derive the dimension of the optical interface in
Table B.2.

The total amount of electronics in the STS system results in

• 14016 SMX ASICs
• 1752 FEB8
• 20480 e-link uplinks
• 576 STS-ROB
• 72 CRI2

B.1.3 MUCH

The front-end electronics of the MUCH subsystem consists of Front End Boards (FEBs)
populated with 2 SMX ASICs. Although each ASIC provides 128 channels, in the MUCH

140



B.1 SMX-based systems: STS and MUCH

article quad half full
1 GBT links per CRI 24 24 24
2 MTP cable type 24 24 24
3 ROB-3 144 288 576
4 GBT links total 432 864 1728
5 CRI cards total 18 36 72
6 MTP patch cables 36 72 144
7 1x MTP-24 to 24x-LC fan-out 36 72 144
8 MTP 12-fold adapter PP 3 6 12
9 MTP patch panel [HU] 1 2 3

Table B.2: Optical interface for the STS. The optical connections inside the STS are ar-
ranged in quadrants (1st column). Connections to the two patch panels will
be performed for the left or right half of the STS (2nd column). The overall
quantities are shown in the 3rd column. Lines 1–3 show input parameters from
the FPGA design (1), the optical connectivity (2), and the detector design (3).
Based on these, we derive the quantities in lines 4–9.

use case only 64 channels are read out per ASIC, to ease the complexity of the PCB
design. The use of 64 channels is perfectly matched to the fan-out capability of modern
PCB technology. As channel fan-out is needed, there is no benefit from employing the high
density channel count provided by the SMX. Thus, the MUCH electronics will comprise of
128 channels per FEB board. Each ASIC will be read out using 2 e-links, so in total, each
FEB board will be read out using 4 e-links. The MUCH detector system comprises of 4
stations, 2 GEM stations upstream followed by 2 RPC stations downstream. Each station
of MUCH consists of 3 layers. The first two layers will be realized in GEM technology
whereas stations 3 and 4 will be realized using trigger-RPC technology at low gain.

MUCH-GEM

GEM detectors will be used in MUCH station-1 and station-2 due to high particle density.
Station-1 has 16 GEM detector modules per layer, 3 layers, 48 detector module in total.
Each module is equipped with 18 MUCH-FEBs. The total number of e-links for station-1
is 16 × 3 × 18 × 4 = 3456. Station-2 has 20 GEM detector modules per layer, 3 layers,
60 detectors in total. Each module is read out by 15 MUCH-FEBs. The total number of
e-links for station-2 is 20× 3× 15× 4 = 3600.

The MUCH-FEBs of station-1 and station-2 can be interfaced using either ROB3 or ROB1
configurations, in the following the focus will be on using the ROB3.

Station-1:

• Number of ROB3 per module: 2
• Total number of ROB3 for station-1: 2× 48 = 96
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• Total number of GBTx for station-1: 96× 3 = 288

Station-2 (ROB3 usage without module crossing):

• Number of ROB3 per module: 2
• Total number of ROB3 for station-2: 2× 60 = 120
• Total number of GBTx for station-2: 120× 3 = 360

The ROB3 are connected to the optical backbone with LC-MTP-24 fan-ins. Each ROB3
provides 1× Rx and 3× Tx links. The MTP-24 connector carries 12× Rx and 12× Tx
fibers, allowing to interface 4× ROB3 boards on 1× MTP-24 connector. The CRI2 will
be designed with 3× MTP-24 connector. Therefore, each CRI2 can interface to up to:

• 3× 4 = 12 ROB3 per 3 × MTP-24 connectors,
• 9× 12 = 108 MUCH-FEB,
• 216 × SMX ASICs.

It is expected that the logic resources of the CRI2 will allow to connect up to 8 ROB3
(= 24 GBT links) per CRI2. So the total number of GBTx required for GEM detectors
of MUCH sums up to 288 + 360 = 648. Therefore, the total number of CRIs for GEM
detectors of MUCH system sums up to 648/24 = 27. See Table B.3 for a summary on
MUCH readout.

MUCH-RPC

RPC detectors will be used in station-3 and station-4 of the MUCH detector system.
Station-3 and station-4 each consist of 20 RPC detector modules per layer, 3 layers, 60
detectors in total. Each module consists of 4 MUCH-FEBs. While the 3 MUCH-FEBs
covering the inner region will be read out with 4 e-links, the 1 MUCH-FEB in the outer
region will be read out with only 2 e-links, which sums up to 3 × 4 + 1 × 2 = 14 e-links.
The total number of e-links for station-3 and station-4 is each 20× 3× 14 = 840.

The RPC detector of MUCH station-3 and station-4 can be interfaced by ROB1, which can
each read out up to 14 e-links and for this case perfectly match the uplink connectivity.

Station-3:

• Number of ROB1 per module (4 FEBs, 14 e-links): 1
• Total number of ROB1 for station-3: 20× 3× 1 = 60
• Total number of GBTx for station-3: 60× 1 = 60

Station-4:

• Number of ROB1 per module (4 FEBs, 14 e-links): 1
• Total number of ROB1 for station-3: 20× 3× 1 = 60
• Total number of GBTx for station-3: 60× 1 = 60
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The ROB1 are connected to the optical backbone with LC-MTP-24 fan-ins. Each ROB1
provides 1× Rx and 1× Tx links. The MTP-24 connector carries 12× Rx and 12× Tx
fibers, allowing to interface 12× ROB1 board on 1× MTP-24 connector. The CRI2 will
be designed with 3× MTP-24 connectors. Therefore in terms of optical connections, each
CRI can be used to interface to up to:

• 3× 12 = 36 ROB1 per 3× MTP-24 connectors,
• 3× 36 = 108 MUCH-FEB (using ROB1),
• 216 × SMX ASICs.

It is expected that the logic resources of the CRI2 will allow to connect up to 24 ROB1
(= 24 GBT links) per CRI2. So the total number of GBTx required for RPC detectors of
MUCH system sums up to 60 + 60 = 120. Therefore, the total number of CRI for RPC
detectors of MUCH system sums up to 60/24 + 60/24 = 6. can reduce the number of CRI
from 6 to 5 nos. See Table B.3 for a summary on MUCH readout, according to which the
full MUCH will have 768 GBT links connected to 33 CRI2 cards.

article numbers
1 GBT links per CRI 24
2 MTP cable type 24
3a ROB3 216
3b ROB1 120
4 GBT links total 768
5 CRI cards total 33
6 MTP patch cables 66
7 1x MTP-24 to 24x-LC fan-out 66
8 MTP 12-fold adapter PP 6
9 MTP patch panel [HU] 2

Table B.3: Optical interface for the MUCH. Lines 1–3 show input parameters from the
FPGA design (1), the optical connectivity (2), and the detector design (3).
Based on these, we derive the quantities in lines 4–9.

B.1.4 SMX data flow and processing

The SMX ASIC implements a dedicated HCTSP [80] protocol. The complete stream
of uplink HCTSP frames is delivered to the HCTSP bridge, described in detail in the
following. The extracted frames with hit data enter the data processing block. The
HCTSP bridge separates the data into individual streams corresponding to single SMX
e-links. The whole transmission chain between the e-link outputs of the SMX ASICs in
the FEB8 and the hit frames output in the HCTSP is transparent, introducing only a
certain latency.
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Figure B.3: General structure of the data flow for SMX

The number of e-link inputs depends on the number of ROB3 blocks handled by the
HCTSP bridge and is equal to 42 inputs per ROB3. The total number of e-link inputs for
typical numbers of GBT links is shown in Table B.4.

Nr of GBT links Nr of ROB3 blocks Nr of e-link inputs
24 8 336 (baseline)
36 12 504 (performance)

Table B.4: The considered CRI2 configurations and resulting number of e-link inputs

The theoretical throughput of a single e-link is equal to: 320 MHz ÷ 30 = 10.66 MHz
(encoded frame size is 30 bit). Due to the protocol overhead, it is safe to assume that the
Hit frame rate will be no higher than 10 MHz. A single ROB3 generates no more than
42 e-links×10 MHz = 420 MHit/s. A single hit frame on the output of the data processing
block is 32 bit, so a theoretical maximum throughput is 13.44 Gbit/s per ROB3. A data
processing block is going to create microslices from one or two ROB3.

The HCTSP provides the frames with a 40 MHz clock and a clock enable flag. Such a
low frequency clock would not allow utilizing the FPGA potential, so it was decided to
use 160 MHz clock for the data processing. Both 40 MHz and 160 MHz are synchronous
(have a common source in an FPGA MMCM). The general diagram of the data flow and
processing scheme is shown in Figure B.3.

HCTSP protocol

The “Hit Control Transfer Synchronous Protocol” (HCTSP) is a protocol for data commu-
nication with a detector readout ASIC [80]. As such communication needs a robust and
optimized solution, the HCTSP is a custom protocol adjusted to some of the ASICs used
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in the CBM experiment. The HCTSP is used in the SMX (STS and MUCH subsystems)
and SPADIC (TRD-1D subsystem) chips.

The protocol maximizes the hit data throughput in the uplink (from ASIC to CRI) di-
rection and data integrity in the downlink (from CRI to ASIC) direction. It is fully
synchronous. Both uplink and downlink frames use 8b/10b encoding for DC-balance, and
the frames in each direction have constant lengths and are transferred continuously.

The downlink frames support 4 request types: no_op (no operation), WRaddr, WRdata,
RDdata (used for register access with 14-bit payload). A 4-bit chip address enables both
individual chip addressing on FEBs and broadcasting messages. Since full-path delay can
reach 1 µs, multiple commands in-flight are supported by using a sequence number. Each
register access command should be acknowledged on the uplink. The error correction
scheme is the modified selective repeat ARQ, where not-acknowledged requests are re-
transmitted, and register values can be verified by readback. The frames are 60-bit long
(after 8b/10b encoding) and last 375 ns. They consist of K28.5 comma character, 4-bit
chip address, 4-bit sequence number, 2-bit request type, 14-bit payload (address/data)
and 16-bit CRC (0x62CC).

The uplink communication contains mainly hit data but also control responses and special
information (e. g., alerts). After all optimizations a throughput of 9.41 MHit/s/link is
achieved, which results in a 71 % link occupancy for the design target of 250 kHit/s/channel
in a 5 link/ASIC configuration. The frames have the constant length of 30 bit (after 8b/10b
encoding), last 92.75 ns and support 5 frame types:

• dummy hit: equivalent of no op, used to fill the link when idle and to transfer the
time counter MSB to keep the synchronization

• hit: containing: 7-bit channel address, 5-bit ADC value, 10-bit time counter LSBs
as hit timestamp, 1-bit error status marker

• TS_MSB: serves as epoch message, transfers triplicated 6-bit time counter MSBs and
4-bit 0x9 CRC

• RDdata ack: acknowledge message for RDdata command, contains 15-bit register
content, 3-bit sequence number LSB and 3-bit 0x9 CRC

• Ack: general acknowledge message with 2-bit ack-type: ack, nack, alert, 4-bit se-
quence number, 1-bit configuration parity, 4-bit status, 6-bit current timestamp (or
0x00 depending on the configuration register), 4-bit 0x9 CRC

The HCTSP protocol does not have its own standard or specification document. However,
it is described exhaustively in a publication [80] and the SMX V2 Manual [81].

HCTSP bridge

The HCTSP bridge is a logic component responsible for the communication with both
the SMX and the SPADIC ASIC. It is named bridge, as it connects two segments of the
system using different communication protocols, Wishbone and HCTSP.
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Figure B.4: Structure of the HCTSP bridge

Figure B.4 presents the structure of the HCTSP bridge. All blocks are accessible via the
Wishbone bus. The downlink and uplink modules are completely independent. Such a
design approach moves part of the complexity from the FPGA logic to the software, which
is much easier and faster to update. The software side allows for:

1. clock phase characterization,
2. data phase characterization,
3. FEBs synchronization,
4. uplink masking,
5. command retransmission.

A command slot is a set of registers, containing information needed to send a particular
command to the SMX. To save resources, the priority of command slots is configurable
in a static way in hardware description sources. The command fetcher is responsible
for choosing which command should be sent, based on the command slot’s content and
priority. The downlink mask allows sending a command to a particular FEB or even a
particular SMX within FEB.
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Figure B.5: Block diagram of the data aggregator for e-links from a single ROB3. The
42 e-links are processed in three groups of 14. The sorter uses 16 bins.

Data aggregator with bin sorter

The processing of data is based on their aggregation and delivery to the FLIM module.
Therefore, the data processing block consists of multiple data aggregators working in
parallel. In the current FPGA design, the data aggregator handles the data from a single
ROB3, and delivers them to a single FLIM channel as shown in Figure B.5.

The main task of the aggregator is to combine the hits delivered by the connected e-links,
sort them according to their timestamps so that they can be assigned to the appropriate
microslices, and finally create microslices transmitted to FLIM. The following paragraphs
describe the stages of this process. The data aggregator used in the current CRI1 prototype
FPGA design uses a bucket sorter which provides limited timestamp-based sorting of the
hit data.

SMX frame reconstruction The hit data sent by the SMX contain only 10 bits of the
timestamp. For further sorting and assignment to the microslice it is necessary to recon-
struct more bits of the timestamp. This task is done by the hit_extender block using
timestamp bits from a hit frame and the preceding TS_MSB epoch message from the same
e-link. There is one such block for each e-link.

The hit_extender waits for a TS_MSB epoch message and validates it (see next Subsec-
tion).
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A timestamp field from valid TS_MSB epoch messages is stored in a register. The time-
stamp of following hit frames is reconstructed by combining the stored TS_MSB value and
timestamp field of a hit frame.

TS_MSB epoch message validation The TS_MSB epoch message does not provide a method
to verify its validity with 100 % certainty, moreover there is no alternative method of
acquiring the timestamp from a dropped TS_MSB epoch message. All hits following a
dropped TS_MSB epoch message would have a invalid timestamp. Taking the above into
consideration, it was decided to attempt to recover a corrupted information, when possible,
even if this may lead to accepting corrupted TS_MSB epoch messages.

In the verification of the TS_MSB epoch message the CRC field is not taken into account,
because a single bit swap in a CRC field would invalidate the whole frame. Instead, a
frame is considered valid if it has at least two identical TS fields. This way a single bit
error cannot invalidate the frame.

Initial stream merging The SMX frames arrive on the input of the data processing
module in a pipeline running with the 40 MHz clock. However, because SMX transmits
the frames encoded in 30 bits at a frequency of 320 MHz (see Sec. B.1.2), the average time
between their arrival cannot be shorter than 93.75 ns.

The initial stream merging may be performed by browsing input pipelines using the round-
robin approach, receiving each found hit data and delivering it to the sorter. The initial
stream merger works with a 160 MHz clock, so it is capable of merging 93.75 ns×160 MHz =
15 e-links without a risk of dropping data.

The 42 e-links coming from a single ROB3 are divided into 3 groups of 14 e-links. Each
group is merged with a single merger.

Bin sorter The bin sorter is used to split hits (that may come in non-chronological
order) into groups registered in certain time periods (bins), which is required to generate
the microslices.

The bin sorter uses an FPGA Block RAM to buffer the data. The memory is split into
a certain number of identical address spaces. A hit is written to an adequate bin based
on its timestamp. The number of hits written to the particular bin is stored in a register.
Based on the local time counter, the sorter decides when arrival of the next hit belonging
to the particular bin is unlikely and closes the bin for writing. The settable timestamp
offset enables compensation of the data transmission delay to ensure closing bins at the
right time. It is possible to request outputting the content of a certain closed bin. The
output data word may be composed of multiple parallel frames, so the readout may be
significantly faster than filling of the buffer.

The bin sorter works with a 160 MHz clock.
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An example implementation of the bin sorter is composed of 16 bins. The bin number for
the particular hit is defined by chosen four bits of its timestamp. If we select bits 13 to
10, then a single bin receives data from a 3.2 µs interval (for bits 12 to 9 - 1.6 µs). The
capacity of the bin is equal to 1024 hits. This configuration is used because 16 bins of 1 µs
interval are sufficient to compensate the worst-case latency when the SMX is connected
with 5 e-links. Sorting resolution of 3.2 µs or 1.6 µs is acceptable for the experiment.
Assuming equal distribution of hits, we may expect the maximum number of hits from 14
SMXs within 3.2 µs equal to 14 × 1 µs/93.75 ns ≈ 478. Of course the fluctuations of the
hit intensity may result in uneven distribution of hits between bins, leading to overflow.
The overflown bin is marked with a dedicated flag.

In case of bins with length of 1.6 µs the expected maximum number of hits is 14 ×
1 µs/93.75 ns ≈ 239, and the risk of overflow is significantly reduced. The price of shorter
bin duration is the reduced period of time in which the hits are sorted.

A significant advantage of a 1024-hit bin capacity is an ability to read out corresponding
bins from 3 sorters in a time shorter than bin duration (if 4 frames are read in parallel),
so there is no bottleneck.

Data collector The data collector collects data from multiple bin sorters and creates a
single data stream. The collector is informed when a certain bin in the sorters is closed
for writing. After that, the collector requests the data from the closed bin from all sorters
sequentially. Multiple frames may be read out in one clock cycle. Bins with a capacity
of 1024 hits are read with 4 frames in parallel so it is possible to read out 3 sorters in
less than the duration of the bin (3.2 µs or 1.6 µs). It is also possible to merge data from
2 ROB3 boards by instantiating 6 sorters in parallel and reading 8 frames in one clock
cycle.

In addition, the data collector generates the microslices.

B.2 SPADIC-based system: TRD-1D

B.2.1 The TRD-1D chain

The TRD-1D utilizes the SPADIC as the front-end ASIC, which combines analogue pre-
amplifier, signal shaper, 9-bit ADC and digital message building in one chip [82, 40].
One ASIC connects to 32 cathode-pads of the detector. Incoming charge is translated
via analogue shaping into signals of characteristic shape, proportional to the amount of
charge being injected. The 9-bit 16 MHz ADC of each channel is running continuously and
transmits to the subsequent hit logic, which releases the digital message building in case of
the configured self-trigger condition being fulfilled. Adjacent channels are automatically
co-triggered in order to enable comparatively large threshold values with still complete
reading of the overall charge deposition on the segmented cathode pad plane. The number
of transmitted ADC samples can be configured. A typical choice is 7 ADC samples.
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The exact time information and the charge value of a hit are calculated/reconstructed
from the transmitted ADC samples of the channels of the corresponding detector hit.
This processing can be realized in the CRI stage (online feature extraction) or in software,
a case separation depending on the reconstruction complexity, e. g., due to signal pile-up,
is possible.

Groups of 16 channels are assigned to 1 uplink (320 Mbit/s e-link), thus one 32-channel
ASIC features 2 uplinks, while being configured and controlled via 1 downlink. In case of
hit rate excess, counting of lost triggers is transmitted for diagnosis, while still the link
bandwidth is used for transmission of as much hits as possible. Transmission of epoch
messages is ensured.

The Front-End Boards of the TRD-1D come in two form factors, adapting to the channel
geometry of different TRD module types. One FEB type is equipped with 3 SPADICs
(FEB3) and the other one with 5 SPADICs (FEB5).

In the next readout stage the FEBs are connected to ROB3 (cf. Sec. B.1.2).

The mapping of SPADIC FEBs to ROB3 is as follows:

1. 4 FEB5 (4× 10 =) 40 e-links interfacing 1x ROB3
2. 6 FEB3 (6× 6 =) 36 e-links interfacing 1x ROB3

For the SPADIC readout the CRI2 is foreseen to connect to 8 ROB3. The 8 ROB3 combine
either 32 FEB5, 160 SPADICs, 320 e-links or 48 FEB3, 144 SPADICs, 288 e-links.

For a TRD fully read out with SPADIC, there will be in total 544 ROB3, connected to
1024 FEB5 and 1728 FEB3.

If the inner modules utilize the TRD-2D, these will be read out differently with the FASP
ASIC, as described in Section B.3.1. In this case (described in Table B.5) the TRD-1D
will reduce to in total 384 FEB5 and 1728 FEB3, connected to 384 ROB3 interfaced by
48 CRI2 cards.

article inner outer full
1 GBT links per CRI 24 24 24
2 MTP cable type 24 24 24
3 ROB3 160 384 544
4 GBT links total 480 1152 1632
5 CRI cards total 20 48 68
6 MTP patch cables 40 96 136
7 1x MTP-24 to 24x-LC fan-out 40 96 136
8 MTP 12-fold adapter PP 4 8 12
9 MTP patch panel [HU] 1 2 3

Table B.5: Optical interface for the TRD-1D. Lines 1-3 show input parameters from the
FPGA design (1), the optical connectivity (2), and the detector design (3).
Based on these, we derive the quantities in lines 4-9.
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Figure B.6: Schematic overview of the SPADIC CRI FPGA design

B.2.2 The SPADIC data processing

The initial data handling after the GBT-FPGA is handled by the HCTSP bridge (cf.
Sec. B.1.4). Following the HCTSP bridge, there is one data processing module per ROB3,
which processes up to 42 e-links (cf. Fig. B.6). The data processing module is split into two
main parts: first the frame processing module, where the frames are prepared for merging
in the sorter module.

Frame processing

The task of the frame processing is to ensure the structural validity of the incoming data.
This is achieved in several steps with the following submodules: The valid frame catcher,
the timeout monitor, the epoch monitor, and the frame to axis. These submodules are
replicated for each e-link.

The valid frame catcher ensures that the frames adhere to the message protocol and
discards the frames if they do not. This module is a safeguard to catch any random
fluctuation in the input stream, which was not detected by the 8b10b decoder in the
HCTSP bridge.

The timeout monitor counts the time in between incoming TS_MSB frames. If the time
exceeds at least six epoch periods (6× 16 µs reference) the e-link is considered timed out
and a special timeout TS_MSB is generated and every 16 µs after.

The epoch monitor module keeps track of the incoming TS_MSB frames. It aims to detect
and replace missing TS_MSB frames.

The frame to axis is an interface which converts the frames to the AXI4-Stream protocol
with an id and last side channels.
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Sorter

The sorter module is responsible for merging the input stream into a single time sorted
microslice stream. The basic working principle is to buffer the data from one epoch for
each e-link. The buffered epoch is then sorted. Currently, 21 e-links are sorted into one
output stream. This results in two 32-bit streams, which are then merged into a single
64-bit stream. It consists of the following submodules:

The buffer write control keeps track of the fill status of the buffers, how many epochs are
currently stored in each buffer, when the buffers are ready to be read from and ensures
correct overflow handling. There is one FIFO per e-link.

Should a buffer run full a counter keeps track of the TS_MSB frames that could not be
written into the buffers. Once the buffers free up the lost TS_MSB, frames are generated
and marked with a flag showing that the buffer had been full.

The buffer read control module controls the data flow from the buffers into the sorting
pipeline.

The sorting pipeline module generates one sorted output stream from n parallel input
streams. Currently, there are two sorting pipelines instantiated, each processing 21 input
links.

The frame merger module combines the output of the two sorting pipelines into one 64-bit
word. Additionally, it ensures proper microslice packaging, i. e., it strips the incoming
TS_MSB frames of their TLAST flag, counts the processed epochs and and asserts TLAST on
the last word of the microslice (after the full number of epochs of a microslice have been
processed).

The microslice timestamper is a simple module which assigns the current microslice time
in ns to the microslice stream.

The microslice control module handles the flow control of the microslices. It suppresses or
enables the microslice stream to the FLIM according to the microslice time window, which
is used for synchronous starting of all subsystems. Additionally, it provides a rudimentary
back pressure handling, by ensuring that no TLAST frame will be discarded due to back
pressure. Whenever a TLAST frame cannot be sent, it is registered in a counter. When the
back pressure is relieved microslice control generates as many empty microslices as missed
microslices have been registered in the counter.

B.3 FASP-based system: TRD-2D

B.3.1 The TRD-2D readout chain

The TRD-2D detector uses the FASP ASIC as analog front-end. Here, each FASP connects
16 pads from the detector and provides 16 analog outputs which are digitized by discrete
ADCs. The analog outputs are flat-top signals. A digital time signal is also provided by
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FASP, indicating the flat part of the flat-top. A version of FASP including ADCs for the
output channels is currently under development.

The output from the ADCs and the time signals are sent to the digital part of the front-
end (GETS), implemented using a PolarFire FPGA (which was chosen because of it’s
radiation tolerant properties), where the digital stream is produced and sent to GBTx
using 320 Mbit/s e-links. For each FASP, one e-link is used. The clock and control signals
are received by GETS via GBTx. The 40 MHz clock received from GBTx feeds a PLL
on the FPGA where the clocks required by FASP, ADCs and internal processing are
generated.

FASPs and ADCs are operated at either 40 or 80 MHz (selectable), however, the times-
tamps always provide 12.5 ns binning. On the GETS output a stream of nanoslices is
produced and sent to GBTx. Each nanoslice includes words corresponding to 128 periods
of 12.5 ns, corresponding to 64 periods of the CBM clock. It terminates with an epoch
message which includes an epoch number. Because the digital part of the front end is
implemented using an FPGA, it is possible to optimize the design later.

Currently, the front end is implemented using 2 boards interconnected with a large stacking
connector. The first board (FASPRO-DR) includes 6 FASPs and connects to the second
board (GETS) which includes 2 FPGAs, one for every 3 FASPs. The GETS board connects
to a C-ROB3 board using 4 SATA cables, 3 for the 6 e-links corresponding to the 6 FASPs
and one for clock and control signals. Between the 2 FPGAs on the GETS board there
are interconnects used to send clock and control. The GETS board also includes 2 DACs
for generating the threshold voltage for FASPs on the FASPRO-DR board.

article numbers
1 GBT links per CRI 24
2 MTP cable type 24
3 ROB3 208
4 GBT links total 624
5 CRI cards total 26
6 MTP patch cables 52
7 1x MTP-24 to 24x-LC fan-out 52
8 MTP 12-fold adapter PP 5
9 MTP patch panel [HU] 2

Table B.6: Optical interface for the TRD-2D. Lines 1-3 show input parameters from the
FPGA design (1), the optical connectivity (2), and the detector design (3).
Based on these, we derive the quantities in lines 4-9. This is based on the
conservative assumption of 24 GBT links per CRI2, which is matter of further
optimisation (cf. Sec. 5.2.4).

Each C-ROB3 accommodates 6 FASPRO-DR/GETS stacks. Overall, for each of the 40
TRD-2D chambers, 30 FASPRO-DR/GETS stacks and 5 C-ROB3 boards are used. It
is in principle possible to accommodate 7 stacks for one C-ROB3, however, this would
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Figure B.7: Schematic overview of the TRD-2D CRI FPGA design

require an active FMC adapter board to distribute the clock and, more important, it
would distribute at least one set of output signals of a FASPRO-DR/GETS stack to all 3
GBTx chips on the C-ROB3. Also, using 7 stacks for 1 C-ROB3 would reduce the total
number of C-ROB3s only if some C-ROB3s connect stacks from different chambers, which
may complicate the mechanics and the final assembly.

Using the experience gained by integrating the current readout chain, the final solution
will be to integrate the main components, FASP, ADCs, FPGA, GBTx, GBT-SCA, etc. in
one single board. This will result in a reduced material budget and several optimizations,
especially if the high-speed transceivers from the FPGAs are used as uplinks to CRI
replacing the slave GBTx chips.

According to Table B.6 the full TRD-2D will have 208 ROB3 providing 624 GBT links
connected to 26 CRI2 cards.

B.3.2 The FASP data processing

The TRD-2D specific HDL blocks process the data sent by the front end described in the
previous subsection. Because the digital part of the TRD-2D front end is implemented
using an FPGA and may be changed, the development concentrated on the main data
stream. The slow control part will be fully developed after the optimization of the main
data stream.

Data flow and processing

The block diagram of the data flow in the TRD-2D specific part of CRI is presented in
Fig. B.7. The data received from GBT-FPGA is first decoded and deserialized. A 30/32
bit serializer/deserializer is used over the e-link which may transmit 30 bits of which only
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26 are currently used. The remaining 4 bits may be used later for a control response
channel from the FEE to the CRI.

The decoded 26-bit word is pushed into one input FIFO. The "over threshold" signal of
this FIFO is sent back to GETS as a throttling indication. The read part of the input
FIFO feeds the merger. For each 26-bit stream entering the merger a 6-bit static FASPid
label is attached, resulting in a 32-bit stream.

The merger performs the time-based merging of the input streams. The nanoslice time-
stamp is recovered for each stream. The merger generates an output nanoslice timestamp
and sequentially plays the input streams corresponding to the active nanoslice. The throt-
tling status of each channel is reconstructed and an error message is written at the output
for each throttled FASP and for each nanoslice. Using this mechanism, it is possible to
identify the cause for an empty nanoslice either due to lacking data from the pads or
because the channel was throttled for a given FASP. The writing of the error messages
may be suppressed by configuration.

The output of the merger is a stream of nanoslices with the input channels merged. This
stream is processed by several blocks, including a FIFO, to make a microslice adequate to
be sent to FLIM. The back pressure from FLIM is propagated back to all merger input
channels and eventually to all GETS.

The operation of the chain is controlled by a DAQActive signal generated from comparing
the TFC time counter with a register (msboundary) set through the slow control interface.
If the TFC time counter has exceeded the msboundary then DAQActive is asserted. At
the assertion of DAQActive, the TFC time counter is saved in a register (TLDelta) and
a counter (Local time counter) is started from 0. This counter is used as a time counter
for the entire chain. It is sent, in a deterministic time, to GETS where it is used for the
generation of the time counter used to timestamp the messages. The timestamp recovered
for the streams entering the merger refer to this local time counter. The reconstructed
timestamp in the stream sent to FLIM is obtained in the last step by adding TLDelta.

Slow control

The current implementation for slow control is minimal, as the flexibility provided by the
fact that GETS is implemented using an FPGA permits the delay of the development until
enough experience is accumulated regarding the required controls. This strategy should
permit the development of an optimized GETS which is important as the FPGA is placed
on the detector and requires some treatment of radiation-induced upsets. Also, a minimal
GETS translates into minimal power consumption and heat dissipation of the front end.

Currently, the slow control consists of a 32-bit channel broadcasted from CRI to all GETS
for setting some registers, the most important of which is the one programming the DAC
which provides the threshold voltage for FASP. When specific registers are written in CRI
through the slow control channel, the corresponding values are written to the broadcast
channel. For the rest of the time, a no-op word is written. No channel from GETS to CRI
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is currently implemented, however, such a channel may be easily implemented using some
of the unused 4 bits of the main data stream.

B.4 GET4-based systems: TOF and BMON

B.4.1 TOF

The TOF subsystem consist out of two different types of front-end electronics (TOF-iROB
and TOF-oROB). The TOF-iROB is optimized for the inner part of the TOF wall and the
TOF-oROB is optimized for the outer part of the TOF wall. The main difference is in the
mechanical design of these two parts of the wall and the resulting mechanical constraints
for the FEE. The internal functionality, however, is the same and based on a single GBTx
configured with normal GBT frames for the uplink.

For the inner wall the FEE sits on the backside of the gas box housing the MRPC detectors.
Each FEE card has 32 input channels. Four PADI ASICs [83] are read out from 8 GET4
ASICs [84, 85]. Up to 5 FEE cards are served by one inner wall readout PCB (TOF-
iROB). Each second GET4 is the SPI Master for the upfront sitting pre-amplifier and
discriminator ASIC PADI. Via SPI commands the threshold on the input stage and the
stretch factor of the discriminated signal can be set by the slow control path of GET4.

The TOF-iROB sits on the outer frame of the inner wall to minimize the radiation dose on
these PCBs and optimize the usage of 40 e-links provided by one GBTx. The TOF-iROB
is interconnected with patch, data and power cable with the FEE. The distances for these
cables will not exceed 2 m. Due to mechanical arrangements not all TOF-iROBs will be
equipped with 5 FEE cards.

For the outer wall the readout PCB (TOF-oROB) is connected directly to the TDC FEE
sitting in a frame on the outer modules. Always two TOF-oROBs can read out one
detector module housing 5 MRPCs and 10 PADI with GET4 FEE. The pre-amplifier sits
inside the gas box, while the GET4 TDCs are connected outside.

Each TDC PCB houses 8 GET4 ASICs connected on the one side to the TOF-oROB with
the GBTx and on the other side to the feed through PCB to connect to the PADI FEE.

Like for the inner wall, always 40 GET4 TDCs are read out via one GBTx. The e-links
of GET4 and GBTx are configured to 80 Mbit/s which leads to a possible hit-rate of
1.8MHits per GET4. It is considered to read out at least 24 GBTx ASICs with one CRI2
(cf. Sec. 5.2.4). Due to mechanical constraints on the outer wall not always all MTP-24
fibers can be be used, but the overhead is negligible.

Therefore, the readout topology of one CRI will look like the following:

• 1x GET4 = 4 Channel
• 1x GET4 FEE = 8x GET4 = 8 e-links 80 Mbit/s uplink and 20 Mbit/s downlink
• up to 5x GET4 FEE = 1x TOF-(i/o)ROB = 40 e-links = 1 GBTx
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• up to 24x TOF-(i/o)ROBs = 1x CRI

According to Table B.7 the full TOF will have 614 ROB1 providing 614 GBT links con-
nected to 20 CRI2 cards.

article outer inner BFTC overall
1 GBT links per CRI 24 24 24 24
2 MTP cable type 24 24 24 24
3 ROB1 436 128 50 614
4 GBT links total 436 128 50 614
5 CRI cards total 19 6 3 28
6 MTP patch cables 38 12 6 56
7 1x MTP-24 to 24x-LC fan-out 38 12 6 56
8 MTP 12-fold adapter PP 4 1 1 6
9 MTP patch panel [HU] 1 1 1 3

Table B.7: Optical interface for the TOF. Lines 1-3 show input parameters from the FPGA
design (1), the optical connectivity (2), and the detector design (3). Based on
these, we derive the quantities in lines 4-9.

Clock distribution system for CBM TOF

The CBM TOF System aims for high precision measurement with a system resolution in
the order of 80 ps. Therefore it is foreseen to distribute a very precise and stable 160 MHz
clock in LVDS inside the cave. For stable data transmission and to be in sync with the
other subsystems the 160 MHz copper clock needs to be phase stable with the GBTx clock,
which is provided by the CRI via the TFC system. A scheme of the TOF clock tree with
clock and control signal paths is shown in Figure B.8.

The TFC (shown on the right hand side in blue) distributes the global time information and
the system clock of CBM via optical connection to all CRIs. A TFC slave, implemented
on each CRI FPGA synchronizes itself to the TFC time and provides all needed clocks
and the actual time information.

As the TOF FEE in the cave has its own low jitter clock distribution system, an optical
link between a CRI and a GBTx inside the cave is required. The GBTx will recover the
160 MHz for the FEE from the optical link and will receive, via a deterministic link, a
SYNC pulse. This pulse is needed to set or reset the internal time counter of the GET4.
The SYNC signal can be used to check the synchronicity between all GET4. At the time of
the SYNC signal, the internal 12-bit time counter of GET4 must be zero. Otherwise it will
be reset to zero and an error will be issued. The “CLK / SYNC / CNTR Board”, which
is a TOF-iROB in a different configuration, (see upper left part of Fig. B.8) is used for
this task. Figure B.9 illustrates the connectivity of the ToF-iROB when it acts as a CLK
/ SYNC / CNTR board.
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Figure B.8: Block Diagram of TOF Readout System

Figure B.9: Block diagram of the ToF-iROB used as CLK / SYNC / CNTR Board
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The key component is the GBTx, which receives the SYNC signal and some control signals
from the CRI via the optical link. These signals are send out via the e-links of the GBTx
towards the FEE. In addition it generates a high quality 160 MHz clock on one of its
dedicated clock outputs. The signals are duplicated eight times on the PCB and send out
on the RJ45 outputs for direct connection to the readout boards or the 2nd distribution
stage inside the cave.

B.4.2 BMON

The BMON subsystem consists of two diamond-based beam detector stations located in
front of the CBM target chamber. One station is suited for a precise T0 measurement
(BMON-T0), the second one will be used for beam monitoring, i. e., beam halo measure-
ment (BMON-HALO). The T0-system aims for high precision time measurements with a
system resolution in the order of 50 ps, which is needed for particle identification. The sys-
tem should be able to handle beam intensities up to 107 ions/s, at higher beam intensities
the BFTC system will take over. The HALO-station is foreseen to be used as an inde-
pendent beam monitoring system, nevertheless it can be useful for background rejection
and therefore the data of the system will be integrated into the CBM data stream. The
readout system is currently under development and evaluation. It is planned to follow a
"TOF-based" approach which reuses readout infrastructure developed by the TOF group
(see previous section).

The diamond based T0 sensor will be equipped with a metallization arranged in 16 stripes
on both sides. A strip orientation in x and y-directions will allow a position information
of the beam particles. The analogue sensor signals will be sent to the PADI ASIC which
are read out by the GET4 ASIC. In total, 32 analogue detector channels are read out
by 32 GET4 ASICs in order to achieve the maximum rate capability, which will be up to
1 MHz per sensor strip. A dedicated Front-End Board is equipped with four GET4 ASICs,
therefore in total eight boards are needed for the T0-system. Data of the 8 GBTx is sent
to a single CRI board. The planned readout scheme of the T0 detector is schematically
shown in Figure B.10.

The HALO detector will consist of a mosaic arrangement of four diamond sensors, each
metallized with four stripes on both sides. This results in a total of 32 channels having
to be read out which will be read out exactly like the T0 station. Sensor signals will
be split and sent to a "stand-alone" DAQ system in order to realize a beam monitoring
system which can be operated independent from the CBM DAQ. The beam monitoring
system which was demonstrated in [72] is planned to be used for this purpose. The sensor
orientation and the readout scheme is schematically shown in Figure B.11.

According to Table B.8 the full BMON will have 16 ROB1 providing 16 GBT links con-
nected to 1 CRI2 card.
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Figure B.10: Planned readout scheme of the double-sided T0 sensor. In total, 32 detector
channels are read out by 16 GET4 ASICs in order to achieve the maximum
rate capability. Data of the eight GBTx is sent to a single CRI board.

B.4.3 The GET4 data processing

One of the 47 optical links, which are available at the CRI1, is used to distribute a 160 MHz
synchronous clock and a SYNC pulse to the GET4 (cf. Sec. B.4.1). For this purpose the
TOF-ROB board in the iROB version is used. In the current FPGA design version from
the other 46 optical links only 32 are used to connect GET4s through the TOF-ROB
board, one TOF-ROB board has one GBTx and this GBTx is connected to 40 GET4
through 40 e-links.

At SIS100 the TOF will use the CRI2, which will allow for 24 optical links and a separate
TFC connection. The CRI1 controls 32 GBTx connected to 1280 GET4, giving a total of

Figure B.11: Planned readout scheme of the HALO station. A mosaic arrangement of four
diamond sensors is foreseen. The primary beam will be guided through the
middle part where no sensor is located. In total, 32 detector channels are
read out by 8 GET4 ASICs in order to achieve the maximum rate capability.
An LVDS fan-out of the detector signal is needed for an independent beam
monitoring system.
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article rack
1 GBT links per CRI 16
2 MTP cable type 24
3 ROB1 16
4 GBT links total 16
5 CRI cards total 1
6 MTP patch cables 2
7 1x MTP-24 to 24x-LC fan-out 2
8 MTP 12-fold adapter PP 1
9 MTP patch panel [HU] 1

Table B.8: Optical interface for the BMON. Lines 1-3 show input parameters from the
FPGA design (1), the optical connectivity (2), and the detector design (3).
Based on these, we derive the quantities in lines 4-9.

5120 channels. In case of the CRI2, it could control 24 GBTx connected to 960 GET4,
giving a total of 3840 channels.

In the following, a brief description of the GET4 clock generation module, download
channel (TDC slow control) and upload channel (TDC data flow and processing) is given.
This is also depicted in Figure B.12.

Clock and sync generation

This module is instantiated only one time and it is used to control the TOF-iROB board,
which is connected to the CRI1 using an optical link (GBT link). The module controls
two e-links, the first one is used to generate a 160 MHz clock used as the main clock for
the GET4, which runs synchronously with the 40 MHz experiment clock. The second one
generates a SYNC signal needed to synchronize all GET4 with the time counter.

To synchronize the GET4 the clock module calculates the time counter value for the next
SYNC pulse and writes it in a GET4 register, and when the SYNC pulse arrives the GET4
internal time counter will be updated. After that, each 25.6 µs (4096 x 6.25 ns) the GET4
will send an epoch message and between the epochs the hit messages with extra timing
information. The SYNC pulse period must be a multiple of 4096 of the GET4 clock and
can be set through a register.

GET4 download channel

The GET4 download channel entity is instantiated 32 times and allows users to configure
and control the GET4 and reconfigure it automatically if a communication problem is
detected with the GET4. It consists of two submodules: the first one implements the
GET4 control channel and the second one uses this channel to reconfigure the GET4 if
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Figure B.12: Block diagram of the TOF CRI FPGA design

necessary. The GET4 reconfiguration module checks the integrity of the enabled GET4,
in particular that epoch messages arrive every 25.6 µs, and that they match with the CRI
time counter.

GET4 upload channel

The GET4 upload channel entity is instantiated as many times as FLIM links exists (16
times), and it consists of a microslice timestamper and a GET4 data stream.

GET4 microslice timestamper The microslice timestamper module converts the GET4
timestamp given in system clocks to nanoseconds and generates a pulse when the microslice
duration has been reached. This signal will be passed to the common module microslice
control.

GET4 data stream This module merges up to 80 GET4 data streams from two TOF-
ROB cards into one FLIM stream. Once the GET4 has been initialized, it will start to
send data through an 80 Mbit/s serial link. This data stream is composed of four types
of messages: error, control, hit and epoch. The epoch message will be sent approximately
every 25.6 µs and contains coarse timing information. If a hit is detected, a hit message
will be sent containing the duration and the fine timing information. To reconstruct the
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absolute timing, the coarse information (from the epoch message) and the fine information
(from hit message) must be used. This format was used in order to optimize the data
overhead. Error and control messages can be sent in order to notify some error situations
or status of the GET4. The data streams originating from the 80 GET4 must be time
sorted and prepared to be written into the FLIM module. The GET4 data stream module
consists of several submodules, the first one deserializes the GET4 data stream, the second
one merges the data between two epochs of one GBTx (40 GET4) and writes it into a
dual buffer memory. The last submodule reads out the FIFO data from three GBTx and
merges it into one microslice/FLIM stream. This FIFO is needed in order to save the
GET4 messages until the next epoch arrives because the epoch message must not be sent
by the 40 GET4 at the same time.

B.5 MVD

The MVD readout chain follows the general concept for GBTx based systems. Apart from
its own pixel sensor ASIC, it also employs dedicated ROB boards due to the required
placement close to the target box.

B.5.1 MVD front ends

The MVD detector consists of MIMOSIS pixel sensors [86]. The exact configuration of the
detector will vary depending on the experimental setup, and contain up to 300 individual
sensor ASICs [21]. Hit information from each of its 516 096 self-triggered pixels is collected,
encoded and stored for each readout cycle.

These cycles (“frames”) have a nominal duration of 5 µs. As hits of one frame cannot be
subdivided into shorter time ranges, a microslice length of less than the frame duration
should be avoided.

The data output of each sensor is realized by up to 8 e-links. The actual amount of data
per unit area varies greatly with the position inside the detector, even within the 4.2 cm2

of active area of one individual sensor. The total data bandwidth of 2.56 Gbit/s is only
sufficient because of heavy spatial averaging and buffering of data on-chip. Therefore,
several links per sensor will be used to transmit data in parallel. Depending on the
corresponding maximum hit rate, the sensors are configured to operate in either a x2, x4
or x8 link configuration. The internal bandwidth of each sensor (10 Gbit/s) is chosen such
that it will be able to handle all hits even during short periods of highest beam intensity
fluctuations [75].

During these periods, data can be buffered in an on-chip memory. If this buffer happens
to run full, the sensors provide an automatic rate reduction mechanism: The size of all
subsequent frames is limited to below the available output bandwidth until the buffer
reaches an acceptable level again. According to simulations, this mechanism is expected
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to trigger only rarely and on few, most-exposed sensors or during exceptional beam condi-
tions [87]. In case of an overflowing buffer, a corresponding flag is activated in the frame
output stream and signals truncation of the last hit data.

In total, 900 e-links will be used to transport the expected 5 GB/s of data at the nominal
interaction rate for heavy ions. These links will be routed from the sensors through flex
cables of very low material budget to the outside of the detector and further on through
shielded, flexible cables to the outside of the vacuum chamber. Here, dedicated MVD-
ROBs will be placed directly on the vacuum flanges. Like the ROB3 used in other sub-
systems, it will contain 3 GBTx, 1 GBT-SCA, and two transceiver modules (VTRx and
VTTx). Each MVD-ROB will provide up to 30 e-links as data uplinks, 15 x 40 MHz clock
lines and 2 e-links for GBT-SCA-based slow control to the MIMOSIS pixel sensors.

The geometric layout as well as the grouping of up to 8 e-links into one readout stream
does not allow for a perfect usage of all available GBT uplinks so that a total of up to 120
4.8 Gbit/s GBT links will be required.

As one CRI board supports at least 24 GBT links (cf. Sec. 5.2.4), the complete MVD
readout would require a minimum number of 4 boards. In order to ease the allocation of
resources for the processing of pixel data per CRI board, at least 5 CRI boards will be
employed. The amount of preprocessing possible on the FPGA needs to be assessed once
the amount of free resources is known. Possible operations include cluster finding within
one frame, merging clusters across frames or suppressing large clusters of hits. All these
operations can be implemented in FLES software as well if required. At least one full
data buffer per sensor (up to 50 kB) needs to be buffered to guarantee that frames from
all sensors can be aligned.

Figure B.13 shows a block diagram of the MVD readout chain.

Figure B.13: The MVD readout scheme. Black arrows indicate connections between single
instances of the main building blocks. The stated multiples of each building
block are rounded and depend on the final MVD configuration.

B.5.2 MVD data processing

The data format of the sensor consists of 16-bit words of various types: header and sub-
headers, data, trailer and idle words. These have been designed to allow the readout
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electronics to automatically detect bit and word alignment as well as synchronize the up
to 8 data streams from one sensor.

Sensor level data preprocessing

The sensor output is already zero-suppressed and encodes pixel hit data according to
individual pixel locations on the matrix. A simplified cluster finding operation at the level
of pairwise grouped pixel columns further compresses the hit data for up to 4 directly
adjacent pixels.

Data processing on CRI boards

The hit data of MIMOSIS pixel sensors is tagged with a frame counter. An initial syn-
chronization resets this counter to zero on all sensors. The FPGA design running on the
CRI board will detect and trigger re-synchronization in case the frame counters begin to
deviate. The sensors record hits within a defined frame time of 5 µs. The same duration
will be applied as incremental timestamps to newly generated microslices. Those hold
the merged hit data from all sensors connected to the corresponding CRI board and are
forwarded to the FLES entry nodes. Mandatory data processing involves at least the
removal and transformation of frame counters, pixel addressing, encapsulation and align-
ment words. The encoding of pixels within one sensor is replaced by a global sensor ID
and pixel address, allocating 29 bits for each hit pixel. In this simplest form, the data
format of an MVD microslice is a list of fixed-size entries representing hit pixels grouped
by frame time. Depending on the available RAM on the final CRI board, further cluster
finding may be possible. This would allow reduced resource usage on FLES nodes in the
Green IT Cube computing farm and optimize the bandwidth of transmitted data [38].

B.5.3 MVD controls

With an intrinsic time resolution in the microsecond range, the use of high-precision timing
on the e-links is not required. A common 40 MHz clock is distributed via e-links which
is driving the PLL circuits on each sensor. Configuration and timing are controlled using
the various buses and discrete I/Os of the GBT-SCA ASIC. These ASICs are placed in
close vicinity of the sensors and provide

• an I2C bus for each group of two sensors for loading pixel masks and threshold levels

• control signals to reset and synchronously start all sensors

• switch power lines to individually enable and disable groups of sensors

• ADCs for monitoring supply voltage and possibly current consumption

• additional control lines for basic environmental monitoring like temperature
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Due to the physical setup of the detector in 8 individual half-planes, these services will
be provided from separate GBT-SCAs that are distinct from those controlling the MVD-
ROBs and are located inside the vacuum vessel. In the MVD, GBT-SCA can be employed
to generate synchronization signals because the required timing precision is only on the
order of 100 ns which is within the capabilities of the chip if the control link to the GBT-
SCA is operated by the CRI FPGA.

B.6 RICH

B.6.1 The RICH readout chain

The CBM RICH detector front-end electronics (FEE) is an FPGA based design. The FEE
is a composition of submodules with a backplane as the basic structure. It is designed to
be as light tight as possible to be used as the connection part between radiator volume
and readout volume of the detector. The side of the PCB pointing to the radiator gas
hosts the H12700B-3 Hamamatsu MAPMTs with their recommended Pin Header for PMT
signals, ground and high voltage connection. The inner side of the PCB is equipped with
SAMTEC connectors. At these connectors the FEEs, the DiRICH boards, a data combiner
board (Combiner board) and a power distribution board (power module) are connected.
One standard backplane can host 6 MAPMTs in a 3×2 array. On the readout side, one
MAPMT is connected to two individual DiRICH boards, resulting in 12 DiRICH boards
per backplane.

The backplane connects the Serializer/Deserializer (SerDes) data lines of the DiRICH
boards and additional low voltage differential signal (LVDS) lines with the combiner board.
As the RICH FEE is used in triggered and self-triggered experiments, a trigger signal
distribution is needed. The trigger signals are distributed from the combiner board to
a trigger fan-out chip on the power module and further on to the individual DiRICH
boards.

The heart of the RICH front-end electronics is the DiRICH board. Each of these cards
hosts the pre-amplification stage of 32 MAPMT pixels, threshold setting infrastructure for
all channels (two peripheral Lattice MachXO3LF-4300E FPGAs) and the Time-to-Digital
Converter (TDC) including the TrbNet based data transport (central Lattice ECP5UM-
85F-8BG381C FPGA).

In the case of the DiRICH, the already existing LVDS inputs of the central Lattice ECP5
FPGA are used as discriminators in order to filter the readout stage input for signals
above a certain threshold. The threshold of each channel is configured individually with
the two additional Lattice MachXO3 FPGAs, supplying the LVDS inputs with a threshold
voltage. These two MachXO3 store the threshold voltage for each channel in the internal
flash memory. The values are loaded at each power cycle but could also be set by an SPI
connection from the central ECP5 FPGA.
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Figure B.14: Schematic overview of the CBM RICH readout concept. The combiner is
a standalone readout board with an own RICH internal CTS and on board
trigger generation. TDC data is calibrated and transmitted on the virtual
data channel via TrbNet. A dedicated hub system on the CRI for CBM RICH
data combines the combiner data and handles the slow control connection.
Generated microslices are transmitted via PCIe to the FLES entry node.

The central FPGA of a DiRICH supports 32 input- and a reference-time TDC channel
with rising and falling edge measurement by the use of a stretcher. A tapped delay line
TDC is implemented on the FPGA, giving a resolution of roughly 10 ps and precision of
around 12-30 ps, depending on the calibration method. The TDC data is locally buffered
in a ring buffer until a trigger signal arrives. The size of the ring buffer and the trigger
rate limits the possible data rate of the TDCs as only a limited amount of data words
could be stored for a DiRICH per trigger signal. The standard buffer size of the DiRICH
readout, storing all hits from the latest trigger, has a size of up to 499 words (1996 Byte).
This limited buffer size could lead to losses of TDC data. To avoid this issue the readout
rate has to be increased to a certain value, depending on the the interaction rate. To be
independent from the general microslice rate and to deal with these readout rates, a sub-
trigger is introduced. The data transport via SerDes from the DiRICH to the combiner
board operates with 2.0 Gbit/s and thus not limiting the throughput.

All 12 DiRICH boards on a backplane send data via their SerDes media interfaces to the
combiner board. The combiner board, equipped with a Lattice ECP3-150EA-8FN1156C
FPGA, is the central component on a backplane for the data connection to the higher level
readout structures. The core usage of the combiner board is the hub functionality. Data
from a CRI is distributed to all DiRICH boards and vice versa. Next to the distribution
of the trigger information from the RICH internal central trigger system (RCTS) and the
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data from the front-end, also the slow control is distributed to all DiRICH boards. The
combiner is equipped with a 200 MHz clock that is distributed to all connected DiRICH
boards. It is used as the base clock for the TDCs and the system clock of TrbNet.

Each of the combiner boards is connected to a CRI via optical fibers. The data is trans-
ported via SerDes and uses a 240 MHz connection. The 240 MHz originates from the
120 MHz clock which is recovered from the 40 MHz clock of the TFC system and is there-
fore synchronous to the CBM time. The combiner board uses clock recovery on the media
interface connecting to the CRI to operate its media interface to the CRI with the 120 MHz.
The main part of the ECP3 FPGA design, the link to the DiRICH boards as well as the
DiRICH boards itself operate on the local 200 MHz clock. A dedicated FPGA based TDC
stage is used to correlate the global CBM clock to the local FEE clock. This TDC data
from the combiner board is part of the merged data of the hub. Due to the TDC de-
sign the reference channel information is always shifted by one readout and therefore, a
rearrangement of the reference times of the TDC is performed later on the CRIs.

The TrbNet network and the TDCs are designed to operate in a triggered mode. To deal
with the self-trigger of the CBM RICH, a pseudo trigger signal, based on the microslice
rate, is generated. As the microslice rate could be rather small and as introduced ear-
lier, a certain readout rate is needed to overcome possible data losses in the FEE buffers,
additional sub-triggers can be generated. The sub-trigger feature generates, e. g., 16 read-
outs during one microslice. On the CRI the 16 readouts are combined to the data of one
microslice. The generation of the sub-trigger is part of the CRI FPGA design. The trig-
ger information is transmitted to the combiner boards by deterministic latency messages
(DLMs). Each of these messages contains an 8 bit information package to distinguish
single sub-triggers. A word alignment at each startup as well as phase alignment are
performed to achieve a deterministic latency. Measurements in the laboratory proved the
fixed latency for the transmitted DLM words.

Each combiner board has a RICH internal central trigger system (RCTS). The RCTS
generates the readout signals and controls the full readout of the connected TrbNet system
downwards the readout tree. Based on the external trigger information from the DLM
and the status of the FEE, a trigger signal as well as trigger messages are transmitted and
readout is initiated.

The use of one RCTS on each combiner is unique in the TrbNet world. Due to this concept
each backplane of the RICH detector operates independently. This allows to add other
boards than a combiner to the readout chain. Especially the use of TrbNet-compatible
hardware (like the “Trb5sc” or “Trb3sc”) for sensor readout as well as additional TDC
measurements of, e. g., a reference signal from a laser source could be implemented.

The TDC data from the FEE and the local TDC on the combiner is merged in the hub of
the combiner. To allow for fast online data processing, an FPGA based online calibration
is part of each combiner board. The TDC data from each channel is calibrated separately
by means of a linear calibration. The data transmitted towards the CRI and packed into
the microslice on the CRI is already calibrated and no additional fine-time calibration on
the unpacking stage is needed.
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The TDC data, as well as slow control data, is transmitted towards the CRI via the
240 MHz SerDes connection. The data transport is based on TrbNet. The data format
of the transmission between combiner and CRI follows a specific protocol, shown in [88,
p. 135].

The control of the FEE uses the slow control channel of TrbNet. All hub stages in the
readout tree combine the slow control information up to the CRI. On the CRI a dedicated
TrbNet link, connecting to a hub-board for slow control or a TrbNet-DCA bridge could be
used. The TrbNet-DCA bridge allows to communicate with the TrbNet slow control via
the CBM specific DCA. The communication interface is inspired by the known TrbNet
readout softwares and allows the use of these existing tools also via the TrbNet-DCA
bridge.

More detailed information on the implementations, the protocols and the overall commu-
nication is provided in [88]. Information about the TDC data and TrbNet in provided
in [89, 90].

B.6.2 The RICH data processing

The electronics subtree of the RICH connecting to a single CRI was introduced in Sec-
tion B.6. For the CBM RICH detector, the current planning foresees the CRI 1.0 as
the final CRI version. In the FPGA of the CRI 1.0 the data generated by the front-end
electronics is processed as follows:

The RICH CRI provides 47 data links. Here, each link receives FEE data, as well as
slow control data, in the TrbNet data format [90]. The data from the fiber connections
is received by the TrbNet media interface operated at 240 MHz and packed into a 16-bit
word, that is part of a dedicated media interface data type.

The data from all these links is furthermore fed into a hub structure (see Fig. B.15): Each
of the two SLRs of the FPGA are equipped with an identical hub structure to handle the
FEE data. On SLR 0, up to 24 links are connected, while SLR 1 will connect to 23 links
and the TFC system. Each of the hub structures is constructed as shown in Figure B.15.
One control hub connects with one link to the DCA bridge (TrbNet slow control) and with
two links (but also be extendable to, e. g., 4 links) to a second layer of two hubs.

The 32 bit data words and additional control signals corresponding to a link from the FEE
are furthermore transmitted to a trb parser entity. Data from the trb parser is transmitted
as an AXI4-Stream to a microslice filter entity (ms filter). After the ms filter, the data is
forwarded via AXI4-Stream to an entity ms gen, the microslice generator. The output of
ms gen is in the microslice format and can be transmitted to the FLIM module. A state
machine controls the data stream towards the FLIM and, e. g., discards data.
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Figure B.15: Schematic overview of the RICH CRI FPGA design

TRB parser The trb parser entity receives TRB data from a hub data interface and
parses the content. It expects TDC data words from different DiRICH endpoints as well
as a RICH internal Central Trigger System (RCTS) packet as the last sub-sub-event. Only
valid TRB data is output to an AXI4-Stream interface with configurable data width and
a prepended header with meta-info. In case of any format error or buffer overflow, the
complete input packet is discarded. The output data of the parser is furthermore aligned
with the FLIM data width.

Microslice filter The ms filter entity filters TRB-data packets according to their trigger
time. It requires the trigger time to be present in the first 64-bit word of the input-data
packet. The microslice filter receives packets via an AXI4-Stream interface and controls
the data flow depending on the time of the microslice or not valid data. The source logic
should contain a buffer large enough to contain the largest packets that may arrive. It
should assert a valid signal for a new packet only after it has buffered the packet completely
and verified it to be valid.

Microslice merger The ms gen entity is the merger for the data from all connected valid
AXI4-Stream links (links from combiner boards). Next to the merging of the different
links, the entity also controls the packaging of the microslice with FEE data generated
by sub-triggers. The full control mechanism is based on the selected time limits of the
current run as well as the TFC time counter.
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B.7 PSD

The PSD detector (cf. Sec. 1.5) readout chain had been developed by a group from INR,
Moscow. A detailed description could not be completed for this document due to the
circumstances described in the Preface. The replacement of the PSD detector will have
different front-end electronics, but is expected to have a similar data volume. Therefore,
for completeness, only a very brief summary of the PSD readout concept is given here.

The signals from the Silicon Photomultipliers were, after suitable analog shaping, contin-
uously digitized with sampling ADCs. All further processing, such as baseline correction
and further filtering, hit detection, and estimation of the time and amplitude of a hit, was
performed in an FPGA.

The prototype used an ADC board initially designed for the ECAL detector of the PANDA
experiment. This 64-channel board is based on two Kintex 7 (xc7k160) FPGAs and
LTM9011 ADCs with 14-bit resolution and a digitization rate of up to 125 Msps. The
communication between the ADC board and the CRI was realized with an FPGA-to-
FPGA GBT link, allowing to handle clock and time distribution as it is done between a
TFC Submaster and a CRI (cf. Sec. 6.3).

One PSD detector module was successfully tested in the 2020 (see [91]) and 2021 (see
Fig. 7.7) mCBM campaign. More information about the PSD readout chain can be found
in [92, 93].
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